
Management of Object-Oriented Software

Components

in Distributed Environments

Mika Ohtsuki

Graduate School of Information Science and Electrical Engineering

Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 Japan

February 1999



Contents

Abstract 1

Acknowledgments 2

1 Introduction 3
1.1 Software Components and Reuse : : : : : : : : : : : : : : : : : : : : : : : : 3
1.2 Object-Oriented Paradigm : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4
1.3 Object-Oriented Software Components and Relationships among Them : : : 6
1.4 Approaches to Issues of Software Reuse : : : : : : : : : : : : : : : : : : : : : 9

2 Distributed Component Repository 14
2.1 Hypertext : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15
2.2 Location Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16
2.3 Representation of Distributed Hypertext Nodes : : : : : : : : : : : : : : : : 16
2.4 Prototype Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19
2.5 Related Works : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20
2.6 Concluding Remarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

3 Class Components 23
3.1 Hypertext Node Generation : : : : : : : : : : : : : : : : : : : : : : : : : : : 25
3.2 Application Construction in Distributed Environments : : : : : : : : : : : : 26
3.3 Prototype Implementation Based on C++ : : : : : : : : : : : : : : : : : : : 27

3.3.1 Extracting Information : : : : : : : : : : : : : : : : : : : : : : : : : : 27
3.3.2 Distributed Automatic Construction of Make�le : : : : : : : : : : : : 30

3.4 Related Works : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32
3.5 Concluding Remarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

4 Design Pattern Components 35
4.1 Design Patterns : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36
4.2 SGML Framework for Design Patterns : : : : : : : : : : : : : : : : : : : : : 37

4.2.1 Basic Framework : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39
4.2.2 Structure Representation : : : : : : : : : : : : : : : : : : : : : : : : : 40
4.2.3 Pseudo-Code Representation : : : : : : : : : : : : : : : : : : : : : : : 40

4.3 Hypertext Node Generation for Browsing : : : : : : : : : : : : : : : : : : : : 43
4.4 Prototype Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47
4.5 Related Works : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

i



4.6 Concluding Remarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

5 Source Code Generation Support Using Design Patterns 52
5.1 Issues for Source Code Generation Support : : : : : : : : : : : : : : : : : : : 52
5.2 Code Generation Process : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53
5.3 Cloning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

5.3.1 Name Space : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55
5.3.2 How to Describe Cloning Constraints : : : : : : : : : : : : : : : : : : 55
5.3.3 Example Using Abstract Factory Pattern : : : : : : : : : : : : : : : : 56

5.4 Prototype Implementation Using Java : : : : : : : : : : : : : : : : : : : : : 59
5.4.1 Input and Output Example for Iterator Pattern : : : : : : : : : : : : 59
5.4.2 Cloning Example Using Abstract Factory Pattern : : : : : : : : : : : 61

5.5 Related Works : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64
5.6 Concluding Remarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

6 Conclusion 68
6.1 Distributed Component Repository and Class Components : : : : : : : : : 68
6.2 Design Pattern Components : : : : : : : : : : : : : : : : : : : : : : : : : : 69

Bibliography 72

List of Publications 77

Appendix A DTD for PIML 80

Appendix B Pseudo Code Syntax 83

Appendix C PIML Example (Iterator Pattern) 85

ii



Abstract 1

Abstract

Cooperative software development in distributed environments has become common be-
cause of recent popularization of computer networks. In such a development fashion, reuse
of software components is necessary as well as in personal or local development, and object-
oriented technology is important as its basis. Reuse of object-oriented software components
in distributed environments, however, has not become common yet as has been expected.
This originates in not only di�culty in understanding characteristics of object-oriented soft-
ware components whose structures are complicated, but also absence of support mechanisms
for obtaining components in distributed environments. In this thesis, �rst of all, we discuss
what are to be handled as reusable object-oriented software components, then propose a
management mechanism for promoting reuse of components in distributed environments.
We call it a distributed component repository. As fundamental components for class compo-
nents, we provide an extraction mechanism from source codes, and register a certain library
for examination. Furthermore, we consider dealing with knowledge as components, in partic-
ular, address to deal with design patterns as components, because they are strongly related
with classes and useful to design reusable structures in an application. In this thesis, we
propose a framework of structure documents for design patterns, and provide two process
mechanisms: a conversion mechanism to browsing format (HTML) and a source code gen-
eration support mechanism. The conversion mechanism equals conversion to nodes in the
above repository. The source code support mechanism aims at design support as well as
comprehension support by relating with source codes in future.
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Chapter 1

Introduction

1.1 Software Components and Reuse

As software has become larger and more complicated since the 1970s, it has become di�cult
to maintain productivity and reliability. Software reuse, therefore, becomes more important.
Some studies on reuse showed that 40% to 60% of code is reusable from one application
to another. And there are bene�ts in reusing software, which have been argued by many
researchers [48, 6, 7, 8]. For example, Sametinger [48] mentions that software reuse improves
quality, productivity, performance, reliability and interoperability.

There are many viewpoints on software reuse. Basili and Rombach see software reuse
as the use of everything associated with a software project, including knowledge [2]. The
knowledge can be represented in such forms as algorithms, software architectures, design
patterns. Sametinger does not consider such knowledge as components to be reused [48].
Tracz de�nes reuse as the use of software that was designed for reuse [58].

In this thesis, we see reuse as using resources associated with a software project. We
de�ne software components as all information generated, modi�ed and referred through an
application development process, including design ideas, concepts, requirements, speci�ca-
tions, designs, source codes, algorithms, software architectures, and patterns.

As Sametinger already mentioned, algorithms, software architectures and patterns, in
particular, are not available in digital form and they are not considered to be reusable
components. Some framework is necessary to deal with them as components.

The object-oriented paradigm fosters software reuse. The term \object-oriented paradigm"
is explained in the next section. Before the object-oriented paradigm appeared, components
include requirements, speci�cations, designs, memos, source codes, test codes and results,
method libraries, algorithms and data structure and software architecture. Components
introduced after the object-oriented paradigm include classes, frameworks, class libraries,
designs using object-oriented modeling methods such as OMT (Object-oriented Modeling
Technique) [46], architectures, design patterns and idioms.

We call the latter components \object-oriented software components". We focus on
reuse of the object-oriented software components, in particular, classes and design patterns.
Classes are basic constituent elements of other components. Design patterns are descriptions
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of design ideas.

1.2 Object-Oriented Paradigm

The object-oriented paradigm was proposed to decrease the cost of software development and
to o�er reliable components. The object-oriented paradigm, in other words, was proposed as
the way to arrange complex and large software structurally to make it easy to understand.

In the object-oriented paradigm, variables related to each other are collected into one
structure with operations related to them as an interface, and the structure is called an
\object". In other words, the term \object" means a package of a data structure and behav-
iors. The object-oriented paradigm is a paradigm to make application development easy, by
minimizing relationships among structures which consist of objects. Due to independence
and modularity among structures, e�ects are expected such as, readability, testability, and
reusability of the structure as components.

There are many object-oriented programming languages [56, 39, 31, 60, 19, 18, 24]: pure
object-oriented programming languages such as Smalltalk [56] and hybrid object-oriented
programming languages such as C++ [19], which are usual procedural programming lan-
guages extended with object-oriented functions.

In both kinds of languages, such relationships as dependencies and method calls can be
separated from each other and arranged by collecting procedures and data structures dis-
persed in procedural programming languages into objects or classes as templates of objects.
Furthermore, the objects can be easily reused by such new concepts and functions as encap-
sulation, inheritance, dynamic bindings and polymorphism. In other words, to accomplish
the modularity, they are used.

Encapsulation is a mechanism which allows accesses to variables and methods of an
object only through interface methods de�ned as public, therefore prevents the occurrence
of unexpected relationships among objects. Inheritance is a function to extend a class, that
is, to add interface and change implementation. The derived class shares interface and
implementations of the base class. Dynamic binding is, in a language with type checking,
when a variable is declared as a class but can be assigned an object of any derived class
at runtime, to deal with the variable as the derived class object. In other words, when a
method call for the variable is called, an implementation of the derived class is executed.
It can realize polymorphism. Polymorphism means behaving in di�erent ways in the same
name. It includes derived classes with a common interface in the base class but di�erent
behaviors using dynamic binding.

Object-oriented programming languages foster software reuse by providing concepts and
functions mentioned above. By using object-oriented programming languages, in practice,
more reusable components are provided. They include componentwares which are com-
ponents especially designed to be reused, and frameworks which contain structures to be
exchanged later by using polymorphism.

However, object-oriented programming languages do not solve such reuse issues as how
to construct reusable components and how to use them. Object-oriented programming lan-
guages provide only functions to construct \objects", but not principles for designing to
make them easy to be reused. As application becomes larger and the number of objects,
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Common Structure
= Design Pattern

Application A Application B

Figure 1.1: Concept of design patterns

classes increases and relationships increase, it become more complex. It results in di�culty
in �nding out what to be reused, and prevents the use of reusable components.

For decreasing di�culty of design especially for making reusable components, and di�-
culty in understanding an expanding number of objects and complicated message passings
among them recently, many analysis and design techniques such as OMT [46] are proposed
and used widely [46, 5, 49, 15]. These are di�erent from each other in their expression abil-
ity and have merits and demerits. Currently, UML [44] is proposed to be a framework for
integrating them by OMG (Object Management Group). These methods are almost inde-
pendent from object-oriented programming languages. They, therefore, can be applied to
usual procedural programming languages with simulating several object-oriented functions.

However, object-oriented analysis and design methods do not provide concrete princi-
ples for making reusable structures either. Modeling methods which can express layered
nested structures are useful for software reuse, because an application can be separated
and expressed as layered nested structures. UML proposed to integrate other methods also
provides the function.

In this thesis, we focus on knowledge called a \Pattern Language" [16, 62] which is col-
lecting attentions in the object-oriented design area recently. A \Pattern Language" is a
description of structure and solution pattern appeared commonly in applications, and is
generally independent from the problems which the application solves (Figure 1.1). \Pat-
tern Languages" are classi�ed into the following: \Architectures", \Design Patterns" and
\Idioms" [16].

\Architectures" are roughest structural patterns of software. For example, they include
MVC (Model View Controller). \Design Patterns" are �ner patterns than \Architectures".
They consist of classes removed overlapped ones. For example, \Iterator Pattern" provides
common interface for iteration among several aggregates. \Idioms" are very concrete codes
to realize an general function using a certain language. They, therefore, are also called
\Coding Patterns". Ones for C++ are known well. For example, there is a coding pattern
to realize re
ection which is used to obtain an object's class name from the object.

When using them for design, generally, \Design Patterns" can be used for implementation
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of an \Architecture", and to use \Idioms" for implementation of a \Design Pattern". In
these components, in particular, \Design Patterns" are e�ective principles to build reusable
structure such as frameworks [43]. Because most of the current design patterns aim to
decrease dependencies among objects using object-oriented facilities such as inheritance and
dynamic binding. W. Pree explains how to decrease dependencies by design patterns into
several essential patterns, and points out they are e�ective for making hot-spots which are
exchangeable modules of a framework [43]. Here frameworks are a set of classes designed to
be adaptable structures for common problems in a certain problem domain. Application-
dependent parts of a framework are designed as classes or modules which can be replaced
later. The exchangeable classes or modules are called \Hot Spots".

1.3 Object-Oriented Software Components and Rela-

tionships among Them

Object-oriented software components in this thesis are as follows:

� Source Codes

Concretely, they are �les containing codes written in object-oriented programming
languages. These are dependent on a concrete language. They can have various extents
of dependency on an application.

� Concepts for handling source codes

The following are conceptual units for classifying and packaging source codes. These
units are used for an application design. The most fundamental unit is class. All others
are composed of classes. In more concrete, they contain references to classes. Because
they are ways to classify source codes, they are dependent on a certain language.

{ Classes

They are fundamental units in object-oriented software. They are depend on a
certain language and the extent of dependency on an application is various, as
same as source codes.

{ Modules

They are sets of classes which are classi�ed and packaged according to a certain
function. They can be contained in both libraries and applications. How to
classify classes is not �xed and dependent on the designer.

{ Frameworks [30]

They are parts or whole of an application or libraries, which are applicable to
other similar problem domains with replacing partial implementation (classes).
They consist of several classes strongly related to each other.

{ Libraries

They are sets of classes separated and collected from applications. The target of
this research is not method libraries but class libraries consisting of classes. A
library can contain several frameworks.
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{ Applications

Applications can consist of either a class or thousands of classes. The target of
this research is such larger applications as which consist of thousands of classes.
Such applications can consist of several modules. They also can use classes and
frameworks in libraries. They are dependent on problems of itself.

� Design Ideas and Concepts

These are components for design principle and program understanding support of
source code components, which collect attention. They are provided on papers in
plain text generally. Frameworks to use them e�ciently on computers in electric forms
is necessary.

{ Algorithms and Data Structures [32, 33, 34]

Ideas to be foundations for designs of data structure and methods of classes.
Independent from both languages and applications.

{ Software Architectures [69, 70]

Ideas to be foundations for designs of rough structure of applications. Independent
from both languages and applications.

{ Pattern Languages [16, 62]

� Architectures
The most language-independent, and the most di�cult to formalize.

� Design Patterns
Dependent partially on functions provided by object-oriented languages, such
as inheritance.
Independent from concrete languages and applications.

� Idioms
In other words, coding patterns. Language-dependent but application-independent.

� Other General Description Documents

They may be formatted in each company. \Literate Programming" [35] is a trial to
integrate source codes and any kinds of documents such speci�cation, design concepts
and memo. A good example is NoWeb [29]. From a view point of the object-oriented
paradigm, model descriptions by OO modeling techniques should be paid attention.
Some of them are designed for certain CASE tools and dealt with in electric forms. In
CASE tools they can be checked for consistency.

{ Requirements

{ Speci�cations

{ Designs

Model descriptions are important. Usually, the descriptions are language-independent.

{ Test Codes and Results

{ Memos
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Table 1.1: Components classi�cation

Executable Application
Dependent

Language
Dependent

Libraries ○ × ○
Frameworks ○ △ ○
Applications ○ ○ ○
Algorithm and data structure × × ×
Software architecture × × ×
Architecture (Pattern Language) × × ×
Design Patterns × × △
Idioms × × ○
Speci�cations × ○ ×
Requirements × ○ ×
Test codes and results △ ○ ○
Memos × ○ △

Components listed above can be classi�ed as Table 1.1
Next, how components mentioned above relate with each other is considered. The fol-

lowings are examples of such relationships.
When deciding the rough structure for solving a problem, usual software architectures

and architectures in pattern languages can be reused. Which one to use is decided by
analyzing requirements roughly. In general, such large structure consists of sub structures.
When designing more detailed structure to realize the structure, the sub structures can be
realized by using �ner architectures and design patterns. What to be used is by picking
up �ner requirements. Design patterns are basic concepts to construct frameworks in the
application. Some of the frameworks, such as ones included in a GUI library, may be reused
in the application. Of course, others may be expanded from prepared ones or created anew
according to requirements. Design patterns are structures only to increase availability and
maintainability. Therefore, data structure and algorithms to solve the given problem are
necessary. Data structure and algorithms as components, generally, are provided in the form
of documents. Some of them may be implemented as a library. You can use them in libraries
or build them up anew.

Figure 1.2 shows the relationships around an application in focusing design patterns
and classes. In this Figure, the boxes put in Application box are attributes indicating
aggregates. For example, Classes is an aggregate attribute including references to classes.
Thus, the arrows from the box to C (Class) circles express the references. The boxes of
Modules, Frameworks, IKCs and Documents are same. Here, \IKCs (Instantiated Knowledge
Components)" in the �gure are concrete instances of knowledge components, which are
necessary to relate the knowledge components to an application. In this research, an instance
of a design pattern is called \IPS (Instantiated Pattern Structure)".

Keeping generated relationships as cross-references can be very e�ective for understanding
an application. The generated relationships are shown as Table 1.2.
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Documents

IKCs

Frameworks

Modules

Classes

C C C C C C

Module

Framework

IPS

Design

Requirement

Application

IKCs: Instantiated Knowledge Components
IPC: Instantiated Pattern Structure
C: Class

Design
Patternimplements

results

adopts

Figure 1.2: Relationships among components

Table 1.2: Kinds of relationships among components

among any documents refers referred
among requirements and designs reasons results

among concepts and collections of class implements implemented
among coarser concepts and �ner concepts adopts adopted

among classes refers referred
inherits inherited

1.4 Approaches to Issues of Software Reuse

Reuse issues are categorized as follows: software development for reuse and software devel-
opment with reuse.

Gibbs argues that a well organized software community (groups of designers and devel-
opers sharing knowledge and experience) is necessary for software reuse in [23].
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\In our ideal scenario, applications would be based on generic software
components accumulated by a software community familiar with the ap-
plication domain. To build a new application, a developer would collect
requirements according to an existing, well-de�ned model of the domain,
select generic software components according to these requirements, and
initialize and compose the selected components to construct the running
application. By analogy, lawyers would like to handle all regal cases as
though they were slight variations on textbook cases."

Gibbs de�nes reusable object classes as experience, then argues that software information
systems for managing and accessing to class collections is necessary.

It is di�cult to use them e�ectively without understanding assumptions of the class
collections as mentioned in [22]. Research in the education of object-oriented design tech-
niques reports that for using frameworks (reusable structure consisting of several classes) it
is e�ective for beginners to learn appropriate application examples [51]. [51] also reports
that learning using structural information (hierarchy-based, including design patterns) is
not e�ective for beginners because of their unfamiliarity to such information, but would be
necessary to use frameworks more e�ectively.

Based on these studies, in order to reuse such components as frameworks e�ectively,
it is necessary to provide an environment to refer to descriptions of assumptions, ones of
structures and application examples. In other words, it is necessary that descriptions and
examples are formatted in a form that is easy for a user to read, and he/she can understand
the semantics structure of them by following them. It enables he/she to obtain them in an
electric form.

Most of CASE tools can relate designs/models to source codes by generating source codes
continuously. Products in CASE tools are stored in a storage called a \repository". Some of
the tools provide interfaces for following relationships among components. The tools aim to
manage every application through its life cycle, but not to support understanding and use
of such reusable components as frameworks.

On the other hand, as networks are popularized and techniques related to distributed
environments are developed, independent distributed systems (peer-to-peer servers) will in-
crease later from now. Software communities can be built up in a cooperative community
of several corporations as a \virtual corporation". Furthermore, broad on such distributed
systems beyond it. In such environments, a mechanism for sharing components over usual
local and centralized repositories.

CDIF (CASE Data Interchange Format) is proposed for interchanging data of CASE
tools among corporations. However, it is a standard to exchange data in a certain repository
into a common format. Relationships of data in CASE tools are usually closed inside the
repository. In other words, to handle relationships among repositories connected to each
other but managed independently, in addition to the standard format, a framework for
dealing with external relationships is required.

In this research, we consider the framework for dealing with distributed and loosely cou-
pled data and relationships among them, then aim to realize the mechanism as a prototype.
The mechanism is called a \distributed component repository" in the rest of this thesis. The
distributed component repository is shown as Figure 1.3 conceptually.

The following issues must be considered.
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Shared Components

local or centralized
repositoryindependent

Figure 1.3: Concept of shared components in distributed environments

� Consistency management of data name space

Providing a mechanism for naming distributed components uniformly.

� Distribution transparency

It is the ability to obtain distributed components without concerning their location.
Providing a mechanism for corresponding component IDs to their locations and propos-
ing them to a user.

� Management of mutual relationships among data

It must be solid for location changes.

� Con�guration management

Version management and con�guration management are necessary because components
are updated concurrently.

First of all, we aim to address the above issues by implementing the distributed component
repository to deal with only class components. A class is the fundamental unit for dealing
with object-oriented software, but all source codes are not separated into the unit class.
Dealing with classes as the fundamental units of object-oriented software independent from
source codes makes it easy to deal with relationships to other conceptual components and
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documents. For example, it becomes easy to see that a certain library contains A class and
B class or a certain function of a certain speci�cation is implemented in a certain class.

In [23] Gibbs argues that a class should support multi views. In this research, however,
we consider a view point for sharing. Class components can be accessed in an access level
which a developer requires. In other words, when he/she uses them as o�-the-shelf parts
without modi�cation, he/she gets only public interfaces of them, and when he/she needs to
refer or modify inside codes of them, he/she can get private implementation of them.

On the other hand, as for the issue of how to build reusable structures, Garlan et al. pro-
poses for \developing sources of architectural design guidance" [22]. As one approach for
the guidance, he mentions design patterns. However, Usual CASE tools do not provide a
framework for dealing with such unformatted information as components.

This thesis focuses on design patterns as knowledge. The reason for this is that design
patterns are can be used because they are language-independent, not far larger than classes
and strongly related to classes as basics for designing frameworks. In other words, using
design patterns as components contributes to the comprehension of frameworks by relating
them to their classes based on design patterns.

For this reason, it is necessary to convert them into electric forms in order to be processed
in computers. The electric forms can be also used for code generation, then it foster software
reuse. Additionally, we aim to foster understanding frameworks by relating them to classes
based on design patterns.

From the above consideration, the rest of this thesis is separated two themes; one is
construction of the distributed component repository for class components, and the other is
a proposal of a structured document framework to deal with design patterns as components
and construction of mechanisms to process them.

First, as for the distributed component repository for class components, we describe
how to construct the distributed component repository, then describe how to extract class
components from source codes and how to handle them. Secondly, as for design pattern
components we begin by discussing how to describe design patterns as structured documents
and propose a framework. Then we propose a source code generation support system for
design support and relating them to class components. At the last, we analyze and evaluate
all the results to make a conclusion.

The component management server as a basic system of the distributed component repos-
itory for class components and a structured document framework for design pattern com-
ponents are language-independent frameworks. The above functions are implemented as
exchangeable client programs or modules. Therefore, we can implement ones for any lan-
guages later.

When implementing our experimental prototype system in this research, the class compo-
nent extraction mechanism targets C++, and the source code generation support mechanism
targets Java. As for the former, because usual libraries are provided in C++, we considered
that it is suitable as subjects for the class components extraction mechanism. As for the
latter, because Java is simpler than C++ as object-oriented language, we considered that it
is suitable as subjects for the source code generation mechanism.

However, The selection of languages is neither essential nor �nal one. When future inte-
gration and practical use of the development environment, any languages could be integrated.

Based on the above discussion, this thesis consists of following chapters.
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� Distributed Component Repository

� Class Components

� Design Pattern Components

� Source Code Generation Support

� Conclusion
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Chapter 2

Distributed Component Repository

Our aim is to support cooperative development of object-oriented software in a dis-
tributed environment. Suppose a team of several developers working together to build a
software system. When its members share libraries and components, the following problems
must be addressed for distributed cooperative work, in addition to problems already solved
in current software development support:

� Integrated Management of Various Kinds of Components

As mentioned in Chapter 1, at software development, various kinds of components
are necessary: not only source codes but also speci�cations, requirements, memos,
test codes and so on. There are several proposals to integrate such various kinds of
components, for example, one from Tektronix [4], which tried to connect components
with each other using the hypertext mechanism.

� Transparency Management

Transparency means the ability to access information without paying attention to
physical location, as in distributed computing, distributed database and so on. In the
distributed computing �eld, OZ++ [26] for example.

� Version Management

This is an old problem in software development, therefore, there are many research
results and commercial products. Representative version management systems are
SCCS [45], RCS [57] and so on. Furthermore, in practice, CVS [14] are used as a
version management system for concurrent development.

� Access Control

� Cooperative Work Support

Until now, cooperative work support has been considered in the �elds of Groupware or
CSCW. Recently, there are several trials [61, 36] for applying the products to software
development.

In these issues, we focus on the �rst and second ones, integrated and transparency manage-
ment. In transparent management, it is crucial not to let users be concerned about actual
(physical or geological) locations of components. There are several distributed components
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site A
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Design

Requirement

Class
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Class

Application

Design Pattern

Class
Note

Test Data

Class

Figure 2.1: Distributed hypertext structure of various software components

management systems: OZ++ [26] which aims to realize distributed computing, and RIG
which aims to realize interoperability of libraries (the sharing of assets among reuse libraries
[9]) and so on. On the other hand, there are several proposals for integrated CASE tools
environments: Chimera [1]， PCTE (Portable Common Tools Environment) [68]， CAIS
(Common APSE1 Interface Set) [41].

Furthermore, among these above problems, we also consider integration of management.
Various forms and relationships of components are unformatted. Therefore, it is di�cult
to manage them formally by using databases. A hypertext is the most e�ective alternative
to manage such unformatted information. In other words, using the hypertext mechanism,
we consider managing such various components distributed among remote sites and related
with each others, as illustrated in Figure 2.1.

2.1 Hypertext

A hypertext [52] stores information in the form of network consisting of nodes connected by
links. A node is an unformatted container of an information unit, which may be anything
that can be stored in computers, for example, texts or image data. A link represents an
arbitrary relation between nodes. Searching a node is done by tracing links successively in
hypertext network. Using a hypertext, software components can be managed integratedly,
by nodes representing components and links representing their relations.

In the standard reference model of hypertext called Dexter [25], a hypertext consists
of three layers: the storage layer, the run-time layer and the within-component layer. The
storage layer prescribes basic structures of the hypertext, i.e. atomic components, composite
components and behaviors of links. The run-time layer prescribes interface from applications

1APSE stands for \Ada Programming Support Environment"
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to the storage layer. This paper focuses on the within-component layer, i.e. how components
should be stored in nodes and how their relations should be formed as distributed transparent
links.

Transparent implementations of distributed hypertexts have already existed: The WWW
(World Wide Web) is a typical example.

2.2 Location Management

Some mechanisms of WWW in part are utilized to implement a distributed hypertext. Node
locations on a distributed environment are identi�ed using URL (Universal Resource Lo-
cator) of WWW. However, WWW enables us only to trace links but not to manage node
locations. Furthermore, the indicated location is mere the location of the �le, and does not
re
ect such structures as modules. For example, in CORBA [40], an identi�er consists of a
repository ID, an interface ID and so on. In OZ++, a scope called school is used. In RIG,
currently a URL is used but URN (Universal Resource Name) will be used in future.

Our approach is similar to CORBA. A table is prepared to manage the names and the
locations of nodes using a database in order to locate nodes e�ciently. In more detail, the
table to made a node ID correspond to a URL of a prepared node �le, or to a CGI (Common
Gateway Interface) program which generates an HTML (Hyper-Text Markup Language) �le
as the node.

All the generated node HTML �les contain links corresponding to dependencies of them
in the form of anchor tags using CGI. The form is not URL itself in order to make location
management easy when the node �les are relocated.

CGI is an interface mechanism to call external procedures from HTML �les. A CGI
procedure with an argument indicating a component ID is placed at the entry of a link, and
the procedure resolves location of the component by looking up the Component-URL table.

Every site, i.e. every workstation in the network, has a table and its management routine
which acts as a server for other parts of the system. There is neither a centralized server
nor a database in the system, but all the site servers collaborate in a decentralized manner
to achieve overall management of nodes and queries in the distributed hypertext.

2.3 Representation of Distributed Hypertext Nodes

An overview of the systems is shown in Figure 2.2, where \httpd" (hytertext transfer
protocol daemon) is a WWW server, \cmpd" (component management protocol daemon)
is a table management server to manage the Component-URL table, and \add component",
\list component" and \query component" are client routines respectively. \Add component"
is the input transformation part in Figure 2.3, which analyzes a given component resource
and extracts necessary information, then creates corresponding components including links
automatically. Both \list component" and \query component" are the output transforma-
tion part in Figure 2.3, which deal with reference requests and inspection requests. It converts
components into HTML �les (if necessary) or other requested hypertext nodes.

The following protocols are delivered between the server and the clients,
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Figure 2.2: Structure of a component management server

� ADD, UPDATE, DELETE
Registration/update/elimination of type/class information

� LIST, QUERY
List/query request of type/class information

As mentioned above, there is no centralized server in the system, and all the site servers
collaborate in a decentralized manner to achieve overall management. This is a reasonable
approach because the size of distributed environments gets much larger, and centralized
management cannot work well. WWW servers provide functions to make links transparent,
however, we ourselves must provide functions to make the Component-URL tables transpar-
ent.



2 Distributed Component Repository 18

input
transformation

unit

storage unit

output
transformation

unit

component
resources

hypertexts

Figure 2.3: General processing model for hypertext

Therefore, it is crucial to maintain consistency of the Component-URL tables of all
the sites. In other words, it is necessary to provide protocols to realize transparency by
exchanging data among distributed repositories in addition to the protocols for server-clients
mentioned above.

In general, there are several methods of maintaining distributed consistency of a shared
resource:

� One site serves the resource (server approach),

� Each site has a read-only copy of the resource (copy approach),

� Each site has a partial copy cached on demand (cache approach).

One method should be selected out of these according to access patterns to the resource. As
for the Component-URL table, writing accesses for addition and update are rare. Reading
accesses for reference are very frequent. They can occur at the search request as well as
at the addition and update requests (due to parsing given source code �les) and at the
compilation (due to collecting constituent classes). In this situation, the copy approach is
the best. Identical copies of the table are placed on all the sites. There are protocols between
servers as well as the ones between a server and clients:

� ADD FROM PEER

� UPDATE FROM PEER

� DELETE FROM PEER



2 Distributed Component Repository 19

class A http://siteA/.../ClassA.pub

class B

name URL

class A

class B

name URL

class A

site A

class B

site B

same

http://siteB/.../ClassB.pub

http://siteA/.../ClassA.pub

http://siteB/.../ClassB.pub

Figure 2.4: Overview of distributed tables

On the network, there must be dangers of message loss and collision. There is no collision
on \update" and \delete" of a class, because only the owner's site can do these, while there
is a possibility of name collision on \add". The system does not try to resolve this, but only
invalidates \add" and reports this to the users who issue \add" simultaneously. Resolution
of the collision is left to negotiation between the users, and it can be done by providing an
aid such as an electric discussion system outside of the system.

2.4 Prototype Implementation

Our prototype targeted C++ class components as the �rst step towards our aim. A class
component is converted to HTML �les at registration, and saved into an accessible data area
of a WWW server. Details of the extraction and registration mechanism are described in
Chapter 3.

Therefore, the location management table manages URLs of these HTML �les, and the
client program which resolves component ID and returns an HTML output does not convert
for the output but returns the �le corresponding to it as is. Moreover, it is implemented
as a script which indicates URL in the form of \Location Header" obtained by requesting a
component ID to the table manager. HTML �les generated at registration already contain
links represented by CGI using the program with a component ID argument. Furthermore,
the servers synchronize by exchanging information of tables among them as shown in Figure
2.4. The module structure of the servers is shown in Figure 2.5.

Details of C++ source code components are described in Chapter 3 as follows: how to
analyze source codes, what to extract from them and how to generate HTML �les from
them.
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2.5 Related Works

Related works that attempted to apply hypertexts to component management for software
development support include the following examples:
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RIG RIG(Reuse Library Interoperability Group) [9] aims at interoperability of libraries.
It manages to share libraries in distributed environments. In other words, the unit of its
component is a library, therefore coarser than components we deal with. And kinds of
libraries are limited to object-oriented components.

RIG manages library components using a virtual repository called NHSE (National
HPCC2 Software Exchange). NHSE works in the same way as our management system:
name assignment and resolution, exchange and interpretation of catalog information and so
on.

Dynamic Design Dynamic Design developed at Tektronix [4] is a CASE environment for
C programs. In its hypertext, nodes represent requirements, speci�cations, design notes,
design assumptions, comments, sources, objects (machine codes), symbol tables, documents
and reports, and links represent relations of \leads to", \comments", \refers to", \calls
procedure", \follows from", \implements" and \is de�ned by".

The Dynamic Design is built on a virtual machine for hypertexts called Hypertext Ab-
stract Machine (HAM) [13]. HAM manages and handles graphs, contexts, nodes, links and
attributes as elements of a hypertext. A graph represents a network structure consisting
of nodes and links, and it is used for visualization of the network structure. A context
represents the order of nodes, and it is used for version management. An attribute is an
annotation for other elements. Those graphs and contexts are usefull concepts for handling
nodes and links. However, HAM has a centralized management mechanism, and therefore
does not suit distributed transparent management in wide-area network.

Chimera Chimera [1] is a part of the Arcadia system which is an integrated distributed
development support environment for Ada programs. It provides interfaces to development
tools using a hypertext as an abstract data type, and it acts as a middleware system to
deal with contents of distributed component databases. As opposed to our system, Chimera
focuses more on hypertext modeling in heterogeneous distributed environments and imple-
mentation of application programming interface (API), rather than how to manage software
components and their relations in an integrated and transparent fashion in distributed en-
vironments.

2.6 Concluding Remarks

To provide transparent mechanism for connecting a lot of kinds of components to each
other in distributed environments, we have implemented a distributed management system
of object-oriented software components presented in this chapter on Sun SPARCstation with
Solaris OS. And we have realized the system that several machines in the network share the
ID-URL table. This system is actually used for managing classes in the GNU C++ library
and ones in our system itself. Furthermore, by cooperating with the source code components
generation mechanism, it can handle the components transparently.

The system is still the �rst prototype, and the following issues should be examined:

2High Performance Computing and Communication
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� Representation of other functionalities required for a repository

Implementing ownership management, access control and version management.

� Integrating more abstract components such as design patterns and frameworks.

The current prototype targets only class components based on C++, but, is enough to
make it easy to refer from other documents such as speci�cations to class components
in distributed environments. The management mechanism for other components is the
same for class components. The system must be designed so as to exchange input
and output transformation units 
exibly. For implementation of such design, using
design patterns such as Abstract Factory may be e�ective to absorb in
uence by class
exchange.

We have been extending our system to store design patterns and to aid source code
generation from the patterns. This is described in Chapter 4.

� Introducing cache mechanism

The current prototype is not e�cient, because, at each reference to a component, the
component must be obtained from network. Therefore, it is necessary to extend the
component management system to cope with cache mechanism.

� Applying the system to real software development to evaluate it.

Lastly, we consider re-implementation using Java language for increasing portability.
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Chapter 3

Class Components

In this thesis, a class is a fundamental component for object-oriented software compo-
nents. It is an element of several kinds of structure components to handle an application and
a library structurally: frameworks, modules and instantiated design patterns. In addition to
them, any documents can refer to a class. Several components consisting of class(libraries,
frameworks, modules and instantiated design patterns) are future issues. In this thesis, we
concern application components in order to execute an application making test in practice.

It is able to generate class components from scratch. However, we consider providing a
mechanisms to extraction class components from source codes written in a certain languages
and construct relationships among them. It aims at fostering reuse of existing libraries as
components. Therefore, we select C++ as the target language for extraction.

Class components have relationships with not only original source codes but also ma-
chine codes compiled form the source codes and construction information for generating the
machine codes. For uniform interface, the class-related components must be \browsable" in
the hypertext format. Furthermore, they must be obtained in compilable format. There are
requests to each component as a hypertext node.

� Class Components

{ They must have an ID and interface information

{ They need to express di�erent interface views according to access authority.

Two views (nodes), public and non-public interfaces, are provided. The public
interface node includes interfaces indicated as public generally. The non-public in-
terface node includes interfaces except for them, indicated as protected or private,
for example.

{ They must be connected corresponding to dependencies.

� Application Components

{ They must have the necessary information to build up an application.

There must be a starting point class of an application. Development and test
environment information are necessary.

{ They need to be related to constituent classes.
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� Source Codes, Machine Codes

They must be provided in formats which can be processed (compiled and executed)
in computers. To handle machine codes, problems of machine-dependency must be
solved.

� Construction Information

It is how to construct a class from several separated source code �les in such a language
as C++. It is described for each class.

From the above requests, nodes and relationships among them are shown in Figure 3.1.
It is necessary to provide both a hypertext generation mechanism for the stored class

components and a mechanism to construct an application for using them. For application
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construction, it is necessary to keep construction information and to provide an input mech-
anism for the information. An application component contains only the starting point of
the application which is necessary to build it up. Representing the application components
as hypertext nodes and relating them to others are future issues.

In the following sections, what information to be extracted for expressing class compo-
nents as hypertext nodes, when to extract it, and how to generate application automatically
are discussed. Implementation of our prototype for C++ is described in the following section.

3.1 Hypertext Node Generation

The following information in source codes is necessary to be re
ected into class compo-
nents.

� Access level of a class

For encapsulation. `Public', `protected', `private' and so on. There are more kinds of
access level in some languages and fewer in others.

� Name

Identi�er of a class.

� Interface information

{ Member functions and member variables
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{ Access speci�ers

For encapsulation. `Public', `protected', `private' and so on. There are more kinds
of access speci�er in some languages and fewer in others.

� Dependencies

Inheritance, whole-parts and reference relationships

The above information must be updated corresponding to updating source codes.
Figure 3.2 shows an overview of the system which saves source codes as components

and shows them as hypertext nodes referred by users. Frequency of update determines the
method of converting and keeping components: extracting at the input transformation unit
and generating and keeping class components inside the repository, or keeping source codes
as is and converting them at the output transformation unit for each request. In other
words, if reference is more frequent than update, conversion should be done at registration.
If not, the conversion should be done at request. If the target components are enough
stable and updated not often, they should be extracted and generated at registration. On
the other hand, because application-dependent or un�nished components are often updated,
they should be converted at request.

Dependency Linkage The generated hypertext nodes of class components must contain
links to others, corresponding to dependencies of the class. Links correspond to identi�ers
of class components. Hypertext nodes, in practice, are outputs in the form of HTML. In the
HTML outputs, CGI anchors are placed at the positions of links, to obtain a target class
component from the repository using a given component ID, and convert it into a HTML
output representing a public interface node. The reason for not using an absolute address
of URL rather than CGI is to make the management of transparency easier.

3.2 Application Construction in Distributed Environ-

ments

There are two alternative ways to construct an application in distributed environments:
using distributed computing, or gathering components and constructing it on a site. In the
former, the constructed application is executed on a distributed system, therefore, machine
dependency does not matter.

The latter is our target. In this case, a system which gathers components corresponding
to dependencies among them and arranges them automatically to construct correctly is
necessary.

On application construction, a compiler must acquire dependency information among
class �les. There is a UNIX tool named \make" [20] for this. Dependency information is
described in a �le called \Make�le," and \make" compiles the source �les according to the
content of the make�le. A programmer must understand and describe all the dependencies
among �les in an application to use the tool. Distributed environments make application
development more di�cult than usual. Such an application development method requires
functions to locate components transparently and to collect components automatically.
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In our system, the class components, as mentioned above, contain dependency informa-
tion among components, making it easy to extract information. Because there are several
languages which separate interface descriptions and implementations, a component author
must give such concrete dependencies among source codes for each class.

A centralized make�le, i.e. a make�le for a whole application is build up from the source
codes dependency information and the dependency information among class components.
Here, the �le to describe the source code dependency information is called \.make" �le.

Details of the procedure are as follows. We make the assumption that all the nodes are
homogeneous, and can share the same machine codes. This is reasonable because we discuss
distributed cooperative development of one application.

i) Identify necessary classes

The system identi�es classes to be compiled by tracing dependency links in the class
components. It starts tracing from the start class indicated in the application infor-
mation when compiling the whole application, and from a class when compiling it
only.

ii) Collect class source codes distributed on network

Machine codes, headers and supplementary information of the identi�ed classes are
collected from node �les. If a class is not compiled and does not have a machine code,
its source code is fetched and compiled at the collector site.

The above procedure is repeated recursively until all the necessary classes are identi�ed and
collected.

3.3 Prototype Implementation Based on C++

Based on the above discussion, a prototype system based on C++ is constructed, which
contains the following functions: class component information extraction from source codes,
HTML �le generation and registration, extraction of dependency information among class,
and automatic Make�le generation. In this prototype, dealing with �nished components
is assumed, therefore, extraction is done at registration, and class components are gener-
ated and saved in the repository at the same time. In the following subsections, details of
implementation are described.

3.3.1 Extracting Information

Extracting type/class information is further divided into two processes: partitioning infor-
mation of a class into nodes and grasping relationship among nodes. C++ is not a pure
object-oriented language, and contains various features not for object-oriented programming
in order to keep compatibility with C. Here we deal with information concerning classes only,
and ignore global functions or data outside of classes.

The following information is extracted for partitioning a class into nodes:

� Class (including struct and union) declarations,

� Other type declarations (typedef, enum),
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� Declarations parameterized as templates.

Typedef and enum declarations are extracted to avoid name con
icts among types, due to
the fact that a class is a kind of type in C++. In the current implementation, signature and
name space declarations are ignored.

The topmost part of C++ grammar description in YACC to analyze and extract these
information is as follows:

program:
/* empty */
extdefs

extdefs:

extdefs extdef

extdef:
fndef
datadef
template_def
......

This means that a program is a series of de�nitions, and a de�nition is either a function
de�nition, a data de�nition, or a template de�nition.

A type declaration is in a typed declaration speci�er which is a part of a data de�ni-
tion, and a class declaration is in a struct declaration in a type declaration. The following
information of a class is extracted out of these:

� Name

� Interface information

Member functions, member variables and access speci�ers { private, protected and
public

� Dependencies

Inheritance, whole-parts and reference relationships

A grammar description concerning this is as follows:

structspec:

......
class_head { opt.component_decl_list }
......

class_head:
......
aggr identifier
aggr identifier : base_class_list
......
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# include<...>
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Figure 3.3: Correspondence between a C++ source code and nodes

aggr:

class
struct
union

base_class_list:
base_class
base_class_list , base_class

base_class:
typename
access_list typename

access_list:
......
visspec another_specs
......

opt.component_decl_list:
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/* empty */
component_decl_list
opt.component_decl_list visspec :

component_decl_list
opt.component_decl_list visspec :

visspec:
private
protected

public

A class name (identifier) and its super class name (base class list), as well as super
class access authorities are in the �rst part, class head of the class declaration. Interface
declarations, functions and variables, are in component decl list, and references to other
types are in function and variable declarations. Variables can be either of an aggregate
relation or a reference relation, however, they are not distinguished.

In this prototype, the format to save class components is HTML �les. Source code
components are given source codes. Therefore, the output transformation unit merely returns
two HTML �les corresponding to the requested component ID, a public interface node �le and
an implementation node �le. The HTML �les are created based on the extracted information.
Only public super classes and members are stored in the public interface node �le, and
protected and private super classes and members are stored in the implementation node
�le. The public interface node �le is an entrance of the class. Correspondence between a
source code and nodes re
ecting the code is shown in Figure 3.3. After the HTML �les are
generated, these are saved in the repository and the class ID and the location of them are
registered in cmpd.

Figure 3.5 and 3.6 show examples of views for the HTML outputs generated from the
source codes shown in Figure 3.4. The former is an example of a public interface node,
and the latter is an example of an implementation node. They are linked to each other.
Moreover, the links to other class components are placed on the name of the components
which are types of class variables. In the �gures, links are indicated by underlines.

3.3.2 Distributed Automatic Construction of Make�le

Suppose that ClassA depends on ClassB and ClassC, and ClassB depends on ClassD. The
declaration part of ClassA is in the �le ClassA.h, and the implementation part is in ClassA.cc
and etc.cc. For example, the source code information is described as follows (in C++ case).

Declaration ClassA.h

De�nition ClassA.cc etc.cc

OtherMachineCode libxxx.a
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/* This is a simple example for my paper.

There is no entity corresponding to these classes. */

#include <String.h>

class ExampleColoredPoint: public ExamplePoint {

public:

enum color_code { red, blue, yellow };

static String color_names[];

private:

color_code color;

public:

void set_color(color_code vc) { color = vc; }

String color_name() { return color_names[color]; }

};

String ExampleColoredPoint::color_names[] = {

"RED", "BLUE", "YELLOW"

};

Figure 3.4: Example source codes

This information is converted as follows:

ClassA.o: ClassA.cc ClassA.declarations
etc.o: etc.cc ClassA.declarations
ClassA.declarations: declaration(in ClassA.make) ClassB.declarations

ClassC.declarations
ClassB.declarations: declaration(in ClassB.make) ClassD.declaration
ClassC.declarations: declaration(in ClassC.make)

Furthermore, in the case where the starting class is ClassA and the application name is test,
the following Make�le and main.cc are created automatically from these.

Make�le

all: test
test: main.o ClassA.o etc.o ClassB.o ClassD.o ClassC.o
main.o: main.cc ClassA.h

$(CXX) -c ClassA.cc

ClassA.o: ClassA.cc ClassA.h ClassB.h ClassD.h ClassC.h
$(CXX) -c ClassA.cc

etc.o: etc.cc $(HEADERS)
$(CXX) -c etc.cc

ClassB.o: ClassB.cc ClassD.h
$(CXX) -c ClassB.cc

ClassC.o: ClassC.cc
$(CXX) -c ClassC.cc
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Figure 3.5: Public interface node

main.cc

/***
* This file is auto generated.
*/

#include "ClassA.h"

int main(char **args) {
ClassA.main(args);

}

Since this system is still under construction, it must be examined in detail.

3.4 Related Works

C++ Source Code Repositories There are many source code repositories for C++
[63, 54], including commercial ones. Most of them support to debug and trace programs.
However, most of them do not focus on aspect as components and not support to reuse.

Object Make In Object Make [53], make�les are described in the unit of a source code
�le (class) as in our system. Our system provides a pre-processor to construct a make�le for
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Figure 3.6: Private implementation node

the whole application, however, Object Make provides a tool called \omake" to build the
whole application by constructing components tracing dependencies.

3.5 Concluding Remarks

To provide a mechanism to deal with class components, which are the most primary com-
ponents among many kinds of object-oriented software components, we discussed the design
and the implemented prototype for a class component generation mechanism and an auto-
matic Make�le generation mechanism to use the class components for C++ source codes.
By cooperating the distributed component management system proposed in the previous
chapter, the connections among several class-related components (source codes, construc-
tion information and application components) are provided, and it provides the basis for
connectivity to other object-oriented software components.

There are some di�culties in implementing the prototype based on C++. The machine
codes of C++ language are strictly dependent on machines. There are many variants of
compiler and language speci�cation for C++, therefore, the 
exible circulation in distributed
environments makes the component management di�cult. To reuse components of C++,
development environments and other conditions must be arranged. For extraction, it is
di�cult to deal with elements except for object-oriented ones. Therefore, we are considering
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to adopt Java language.
For automatic make�le generation mechanism, it is necessary to discuss how to describe

dependencies in detail. Furthermore, it is necessary to discuss how to describe application
and library components.

Furthermore, for e�ective program understanding support of class components, a mech-
anism for reversed reference to speci�cations and other components is necessary. A proposal
is provided for automatic reversed reference generation by generating application/class com-
ponents from design patterns. This proposal will be discussed in more detail in Chapter
5.
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Chapter 4

Design Pattern Components

\Design patterns" are collecting attentions in the area of object-oriented analysis and
design. A design pattern is a description of a typical problem and a solution for it which
frequently appears in applications but is independent from problems which the applications
target. The bene�t of design patterns is to share solutions over areas, to reuse the solutions
as well as to enable developers to communicate more easily using the patterns.

Design patterns are design know-hows to modularize applications mainly, therefore, these
are not necessary to solve problems the applications target. In other words, without design
patterns you can make applications only to solve current problems. If a part of an application
or a library implements a design pattern, the meaning of the structure is di�cult for others
to understand. So, the prepared structure in the application or the library may not be used,
or in the worst case, even destroyed. To prevent the above problem, collaboration between
design patterns and applications and libraries in which these are used is necessary.

Currently, however, design patterns are treated as documents and there is no uniform
framework to manage the patterns in a catalog on computers. We propose building a catalog
of design patterns upon the results of our preceding research [42] as described in the previous
chapters. Current design patterns are described using plain texts, �gures and pseudo codes.
For example, patterns in a book such as \Design Patterns [21]," are not able to be managed in
computers. Therefore, we aim to build a framework for dealing with plain texts, �gures and
pseudo codes uniformly based on SGML (Standard Generalized Markup Language [67]).
SGML is a generic term for di�erent languages to describe structure of di�erent kinds of
document using marks called \tag". Furthermore, we address to code generation support
from design patterns to relate them with source codes.

By expressing patterns in SGML, it is possible to deal with plain texts, �gures and pseudo
codes uniformly, and it is easy to manage consistency of meanings and to relate them with
source codes. On the other hand, because of the integration of plain texts, �gures and pseudo
codes in a unit, it has to be separated into texts, �gures and pseudo codes. In addition,
because �gures are converted into structured documents to relate patterns with source codes,
the �gures has to be generated from the structured documents. At code generation, it is
necessary to supplement information by an user.

In the following sections, design patterns are explained brie
y. Next design patterns
using SGML are proposed. Furthermore, the conversion mechanism from the description into
hypertext nodes and supporting system for source code generation using the description and
implementation of a prototype using Java are explained. Then related works are described
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in the last sections.

4.1 Design Patterns

A design pattern is a description of a typical problem and a solution for it which frequently
appears in applications but this pattern is independent from problems which the applications
target. The term \design pattern" originates in the �eld of Architecture, and used to name
structures used in architectures frequently. Gamma applied the term to structures in object-
oriented applications in his doctoral thesis, and the way to describe is based on one in the
�eld of Architecture.

In the area called Software Architecture in the �eld of Software Engineering, there are a
lot of researches for solutions and algorithms used in software. In object-oriented program-
ming, a program is separated into components per object, the structure of the program is
more similar to an architecture. Most of structures proposed as design patterns use fea-
tures of object-oriented technology, in particular inheritance and polymorphism. W. Pree
[43] states that design patterns support to set up hot spots, which are several components
of an application to exchange at extension in the future, when designing \frameworks" in
object-oriented design.

Recently many researchers have proposed and discussed design patterns. [21] is one of
the most famous catalogues of design patterns, which contains 23 patterns which are found
mainly in GUI area. There are other patterns in P. Coad's paper [17] and several papers in
[16, 62]. When designing the format of SGML for design patterns, we based on [21]. Some
of patterns in the book are used as test cases.

A design pattern includes at least four essential elements; a name, a context, a solution
and a consequence. A name expresses characteristics of the pattern and may contain other
names as aliases. A context includes problems described as concrete examples or in abstract
expression and sometimes includes several selections and costs for them. A solution includes
the reason to apply it and practical design forms and rules． A consequence is a description
of what happens by applying the pattern. In addition to the four components, a design
pattern contains a combination with other patterns and relations such as which pattern to
be more speci�ed.

In [21], a design pattern contains the following items,

Name : \name", \also known as"
Context : \intent", \motivation", \applicability"
Solution : \structure", \participants", \collaborations"
Consequence : \consequences"
Others : \known uses", \related pattern"

Most of these items are explanation described in plain texts, and sometimes �gures are
inserted using OMT description to supplement the explanation. For solutions, charts, which
may include message passing, must be supplemented. In the next section, we will discuss an
SGML framework to deal with this kind of documents.
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Aggregate

CreateIterator()

ConcreteAggregate

Client

return  new  ConcreteIterator(this)

Iterator

First()

Next()
isDone()
CurrentItem()

ConcreteIterator
First()
Next()
isDone()
CurrentItem()

CreateIterator()

Figure 4.1: Example of design pattern

Example of Design Pattern: \Iterator" As an example of design patterns, Iterator
Pattern is explained brie
y.

The Iterator Pattern is one of the closest design patterns to concrete data models. It is
a pattern which enables the exchange of both types of aggregate and methods for iteration,
by separating structure to iterate from an aggregate and making interface common, when a
certain set to be iterated is given. The Iterator Pattern, therefore, consists of four classes
(roles): an abstract and a concrete classes for aggregate, and an abstract and a concrete
classes for iterating the aggregate classes. The concrete classes corresponds to each other.
A method named CreateIterator, which is a design pattern called \Factory Method [21],"
makes the concrete classes correspond to each other and conceals implementation (concrete
iterator name) from outside. Iterator has four methods to represent iteration functions
generally, however, in several implementations (for example, java.util.Enumeration in Java
library), they may be packed into two or three methods.

4.2 SGML Framework for Design Patterns

To make a catalogue of design patterns on computers, we separate a design pattern de-
scription into three parts, explanation such as context and result in plain text, structure
information expressed as a class diagram and pseudo codes included in the diagram. Ex-
planation is dealt with as structured texts separated into items. Structure information is
described also as structured texts. On the other hand, pseudo codes are described using a
simple language. The reason for dealing with structure information and pseudo codes not
as a chart but as structured texts is to use the information for interactive code generation.

Here pseudo codes are a description for supplementing methods in OMT charts in [21],
which are expressed like codes in a simple programming language. We design a simple
internal expression to generate code fragments in a concrete programming language.

To integrate these elements uniformly, SGML (Standard Generalized Markup Language)
is adopted. SGML is a generic term for di�erent languages to describe the structure of
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Figure 4.2: System overview for design pattern components

documents using marks called \tags". Originally, SGML was proposed for sharing documents
such as manuals [67]. The documents had similar structures but were described in di�erent
formats. When sharing them among companies, the standard format was required. SGML is
a framework to de�ne formats for the documents. One of the most representative databases
using SGML is a manual database of the Canadian Department of National Defense in
USA. HTML (Hypertext Markup Language) used in WWW was the most popular instance
of SGML, but recently HTML focuses more on layout information rather than structure
information. So HTML is getting apart from SGML.

The \tag" is expressed as a string enclosed by \<" and \>". When a document has
certain structure such as an recipient address of a letter, it is expressed by enclosing the
address string by a start tag (<to>) and an end tag (</to>) as \<to> Name </to>". Texts
enclosed by tags can contain texts enclosed by tags recursively, so a hierarchy structure can
be expressed. Tags can have attributes such as a name. DTD (Document Type Description)
describes rules to construct a certain structured document by de�ning tags [67].

The language that we designed to describe design patterns is named PIML (Pattern
Information Markup Language).

There are two required processes for PIML documents as the following (and as shown in
Figure 4.2),

� converted into hypertext nodes

� related with source codes generated from them

This results in the following requirements for the PIML structure.

� explanation texts

should be separated from the whole document and displayed as hypertext nodes
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� structure information

should be expressed in a �gure as a hypertext node

needs to be structured for source code generation

� pseudo code

is not converted to a hypertext node (inserted in an OMT chart as is)

is analyzed at source code generation

In the following sections, whole structure of PIML will be described, as well as structure
information and pseudo codes. DTD (Document Type De�nition) of PIML and an example
of PIML description of Iterator Pattern are attached at the end of thesis: Appendix A and
C.

4.2.1 Basic Framework

The items in [21] are used almost as is to determine the tags of PIML. The context items,
\intent", \motivation" and \applicability", and a consequence item \consequences" are con-
verted into the tags without any change. Three of the solution items, \structure", \partic-
ipants" and \collaborations", are re-constructed into structure information separated into
classes. The others of solution items, \implementation" and \sample code", are converted
into tags without any change as the context and consequence items. In the future, the
\implementation" item will be integrated into structure information to select trade-o�s.

In this paper, items used in [21] are used without change, but there are some other for-
mats. Essentially they are also based on de�nition of design patterns proposed by Alexander,
therefore PIML documents can be converted into the format. For example, \intent" can be
omitted because it is merely a resume of the context items. "Motivation" and \applicability"
may be merged into one item.

The example of \Iterator Pattern" described in PIML is shown in Figure 4.3. As can
be seen in the example, <pattern> has a name of a corresponding design pattern as an
attribute, in this case \Iterator", and may have the following ten tags:

� <also known as>

� <intent>

� <motivation>

� <applicability>

� <consequences>

� <implementation>

� <samplecode>

� <known uses>

� <pattern relations>
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� <structure>

Eight tags of them, <also known as>，<intent>，<motivation>，<applicability>，
<consequences>，<implementation>，<samplecode> and <known uses>, correspond to eight
items in [21]: \also known as", \intent", \motivation", \applicability", \ consequences", \im-
plementation", \sample code" and \known uses". These tags include texts such as:

<intent>

Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation.

</intent>

On the other hand, the <structure> tag integrates information of three items, \structure",
\participants" and \collaboration".

The exact grammar of PIML is described in DTD (Appendix A). The principle behind
the design of PIML is that elements including long texts are expressed as tags and elements
such as an identi�er and a boolean value are expressed as attributes.

4.2.2 Structure Representation

Structure information, consisting of classes and relations among classes, should be de-
scribed in a structured document not in a �gure, so that can be used for code generation
mainly. Therefore the items in [21], \structure", \participants" and \collaborations", are
re-constructed into structure information separated into classes. In the concrete, structure
information contains explanation included in the \collaboration" item, classes and relations
among classes. A class contains a name, explanation for the class included in the \partici-
pants" item and interfaces. An interface contains a name, an explanation about the interface
and pseudo codes included in a �gure of the \structure" item. A relation between classes
contains one kind of inheritance, aggregate, reference or creation. It also contains names of
target and origin classes. A label is needed if it is aggregate or reference.

Furthermore, layout information to generate an OMT chart and cloneable information to
support source code generation are added (Table 4.1 indicates outline and tags of the struc-
ture part of PIML). Details of layout information and cloneable information are described
in Section 4.3 and Chapter 5 respectively.

We call classes constructing a pattern \roles" in order to distinguish classes of a pattern
which express roles in the pattern from the actual classes constructing an application in our
system (Figure 4.4). In the rest of this paper, we call classes of a pattern \roles" and classes
of an application \classes".

Figure 4.5 is a brief description of structure information of the \Iterator Pattern" in
PIML.

4.2.3 Pseudo-Code Representation

All characteristics of a pattern can not be described only by the structure of roles. Behaviors
of all roles determine the behavior of the whole pattern. In [27], the functions which must
be executed in a method of a role are described as \contracts" among roles using a formal
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<pattern name="Iterator">

<intent>

Provide a way to access ...

</intent>

<motivation>

An aggregate object such as a list ...

</motivation>

<applicability>

Use the Iterator pattern ...

</applicability>

<consequences>

The Iterator pattern has ...

</consequences>

<implementation>

Iterator has many implementation ...

</implementation>

<samplecode>

We'll look at the implementation ...

</samplecode>

<known_uses>

Iterators are common in ...

</known_uses>

<related_patterns>

##p:Composite##: Iterator are ...

</related_patterns>

<structure>

...

</structure>

</pattern>

Figure 4.3: PIML example

expression. On the other hand, in [21] it is described in a simple programming language in
a box connected to a method name to help intuitive understanding. We intend to generate
code fragments in a practical language re
ecting behaviors of roles. Therefore, we design a
simple language which satis�es requirements to generate code fragments.
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Table 4.1: Structure part of PIML syntax

Structure notes: Notes;
relations: Relations;
roles: Roles;
cloneables: Cloneables;
layout: LayoutInfo

Notes is a comment. Relations
and roles are necessary structure ele-
ments. Layout is necessary to gener-
ate OMT chart. Cloneable is neces-
sary for source code generation sup-
port.

Roles Role* Set of roles.
Role syslabel: Identi�er;

abstract: Boolean;
notes: Notes;
operations: Operations;

`Syslabel' is an identi�er. `Abstract'
is a 
ag attribute to indicate if
the role is abstract or concrete.
`Notes' and `operations' are child el-
ements.

Relations Relation* Set of relations.
Relation Inheritance j Aggregate j Reference j

Creation
Relation is one of inheritance, aggre-
gate, reference or creation. All rela-
tion have two IDs to indicate a target
class and a origin class.

Inheritance target, origin: Identi�er Inheritance dose not have an identi-
�er.

Aggregate target, origin, syslabel: Identi�er;
number: Number

Aggregate has an identi�er and the
`number' attribute to indicate if the
target is a collection of the class
(many) or the class itself (single).

Reference target, origin, syslabel: Identi�er;
number: Boolean

Reference has an identi�er and the
`number' attribute to indicate if the
target is a collection of the class
(many) or the class itself (single).

Creation target, origin: Identi�er Creation dose not have an identi�er.
Operations Operation* Set of operations.
Operation syslabel, return value: Identi�er;

abstract: Boolean;
access: AccessSpec;
notes: Notes;
code: PseudoCode;

Operation has four attributes and
two elements. The `return value'
attribute is a return value of the
operation. The abstract attribute
indicates if the operation is ab-
stract or concrete. The `access'
attribute can contains an access
level, public, protected, private,
privateprotected.

Here, the meanings of marks in the second rows are as follows: \�" is a set, \j" is

a selection and \;" is a connection. In addition, Syntax attributes are described in

the format as \attribute name: syntax element name".

In other words, the language can express minimal control constructions, method calls and
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anApplicationClass

member variable or method

Role1

Role2

aDesignPattern

aDesignPattern

Figure 4.4: Correspondence between a class and roles

assignments, and does not include complex statements such as nested classes and expression
statements for concrete operations. The language having such characteristics are designed
as a language like Java. An iteration statement is used only for broadcasting to aggregate of
objects, so there is only \forall". Pseudo codes described in the simple language are analyzed
and converted into real code fragments by replacing names and so on. In our current research
Java is adopted as the target language, but languages are not limited if grammars of them
satisfy the above characteristics.

The following is an example of pseudo code for CreateIterator operation in ConcreteAg-
gregate role of Iterator Pattern.

Example: ConcreteAggregate::CreateIterator() of Iterator Pattern

<pseudocode>

return new "ConcreteIterator" ( "this" )

</pseudocode>

Also the whole syntax of the pseudo code is attached in the last of this thesis as Appendix
B.

4.3 Hypertext Node Generation for Browsing

A PIML description is separated and converted into hypertext nodes as follows:

� Contents table
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<structure>

<notes>

Collaboration description

</notes>

<cloneables>

<cloneable>

<celem type=role id=...>

...

</cloneable>

</cloneables>

<relations>

<inheritance from="ConcreteIterator"

to="Iterator">

...

</relations>

<roles>

<role syslabel="Iterator">

<notes>

Explanation for the Iterator class.

(corresponding to a part of

a "Participant" item)

</notes>

<operations>

<operation syslabel="First" ..>

</operations>

</role>

<role syslabel="ConcreteIterator">

...

</role>

</roles>

</structure>

Figure 4.5: Structure part of PIML example

� Explanation items

� Class diagram (OMT chart)

The table of contents is generated dynamically by extracting all item tags included in a
PIML documents, which consists structure of items of a pattern.

Explanation items except <structure> are converted into HTML outputs by enclosing
extracted texts with HTML tags. Cooperation with other software components must be
represented as hypertext links. The �rst problem is to represent links to other patterns and
other explanation items. Also, links to source code components are important.
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Figure 4.6: Process model for design pattern components

The contents page and explanation item pages are generated dynamically, therefore, it is
di�cult to denote absolute URLs of pattern components into them directly, as in the class
component case. Furthermore, it is di�cult to insert CGI procedures generating the pages in
PIML documents, because URLs of CGI procedures are variable. Consequently, we devised
\abstract anchor" mechanism.

When extracting each item from a PIML document and generating HTML outputs,
identi�ers put in the document as anchors are converted into CGI procedures with the
identi�er as an argument. By invoking the CGI procedures, a new HTML converting process
for generating a contents page corresponding to the given identi�er is executed, By this
mechanism, when selecting an identi�er in a current document, a component corresponding
to the identi�er is displayed.

To perform this function, identi�ers marked by special marks (distinguishable from tags)
must be inserted in the document beforehand. As the mark, currently ## is used.

For example,

Description of Iterator Pattern

Related Patterns Composite: Iterators are often applied to ...

PIML description for the above:

<related_patterns>

##p:Composite##: Iterators are often applied to ...
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Generated HTML Page:

<head> Related Patterns </head>

<body> ...

<a href="http://webserver/cgi-bin/getcompo?pattern&Composite&index">

Composite </a>: Iterators are often applied to ...

The format of class diagrams used in this paper follows [21] which is a simpli�ed version
of class diagram in OMT (Object Modeling Technique). OMT is a modeling technique
proposed by J. Rumbaugh et al [46]. The class diagram in [21] consists of boxes expressing
roles and arrows expressing relations among roles. A box of a role contains the name of the
role and methods. A method may have pseudo codes in a box beside a role box. In this
case, a line is drawn between the method string and the pseudo code box. A relation must
be either inheritance, aggregate, reference or creation. A kind and multiplexity of a relation
arrow can be distinguished by the shape of terminal points of the arrow. Aggregate and
reference relations may have their names; in this case, the name is attached beside the line
of the arrow.

The reason to generate class diagrams from structure information but not to prepare as
a �gure drawn by hand is to re
ect structure information described in PIML. When drawing
a diagram practically, layout information is necessary in addition to structure information.

In automatic chart generation, generally, one of the biggest research issues is automatic
arrangement of constituent elements. However, because of the limited number of elements
and low update frequency, it is adopted to describe layout information in a design pattern
description and use it for layout. Therefore, to describe layout information, the new tag
<layout> is introduced as an element of <structure> tag. There would be an alternative to
attach layout information into <role> tag, but it is not adopted because layout information
should be independent from semantic information.

Concretely, <layout> tag is a tag to express a two dimension array. It has a number
of rows and columns as attributes, and boxes (<box>) as elements. A <box> tag contains
an identi�er of the target role and an index of the two dimension array to be located as
attributes. In other words, a descriptor must decide where to locate role boxes in a two
dimension array beforehand.

For example, the PIML description of \Iterator Pattern" has the following layout infor-
mation:

<layout rows="2" columns="3">

<box name="Aggregate"

row="1" column="1">

<box name="ConcreteAggregate"

row="2" column="1">

<box name="Iterator"

row="1" column="3">

<box name="ConcreteIterator"

row="2" column="3">

<box name="Client"

row="1" column="2">

</layout>
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The 
ow of automatic generation of OMT chart is as follows:

Analyze layout information (done at analysis of PIML)
↓

Generate boxes and linkage them to roles in correct position.
↓

Calculate size of boxes by using font size and the number of characters.
↓

Calculate size of the layout �eld by using the max hight of boxes in a row and the max
width of boxes in a column.

↓
Draw boxes on the �eld by using the above location data

↓
Draw lines between boxes corresponding to relationships

4.4 Prototype Implementation

Figure 4.7 is a class structure of a mechanism to convert pattern components stored in PIML
format into HTML. The location information can be obtained from a server managing an
identi�er and location table for software components.

Pattern Viewer

Browser

cmngr

obtain PIML file

OMTGenerator
generate(PatternComponent)

PIMLParser
parse(InputStream)

PatternComponent

ComponentManager
getPIML(PatternID) parser

cmp

generator

LocalComponentManager

URLComponentManager

Applet

Application
Main

invoke

parser

cmp

HTMLGenerator
generate(PatternComponent)

generator

HTTPD

obtain PIML file

CGI

OMT

HTML

cmngr

(from applet)
(from CGI)

(from CGI)

(from applet)Repository

Figure 4.7: Overview of converting system (for view)
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Pattern in the �gure is the object converted from PIML �le obtained using location
information as abstract syntax tree (a variant of \Composite Pattern"). Pattern2PIML in
the �gure convert a Pattern object into HTML by scanning the Pattern tree, and corre-
sponds to ConcreteVisitor in \Visitor Pattern". In interactive code generation, converters
corresponding to ConcreteVisitor are used.

Figure 4.8: Index page

Figure 4.8, 4.9 and 4.10 indicate respectively the content table, the item \Known Uses"
in explanation items and the OMT chart expressing structure information generated from
the PIML description of Iterator Pattern.

4.5 Related Works

There are two approaches for cataloging design patterns on computers: one is to focus on
a document aspect of a design pattern, and the other is to focus on a solution aspect. The
latter means formalization of design patterns not for developers to apply by hand but for
computers to support it. In this approach, context and consequence descriptions of patterns
are still in the form of texts, and its document aspect is preserved. In other words, what to
formalize is only solution such as structures, pseudo codes and so on.

Approaches to managing patterns as documents is categorized according to management
granularity. There are two extremes; one is to merge all patterns into one �le, and the other
would be to manage per role or method. The two approaches are managing per pattern
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Figure 4.9: Item page

and managing per item of a pattern. The former makes management easy, but requires
dynamic decomposition. The latter does not require decomposition of patterns, but makes
management cumbersome.

There are already several examples focusing on a document aspect of patterns. Portland
Pattern Repository [64] and a pattern DB at MIT [65] are repository systems to share design
patterns and other related documents on the Internet. [64] has only a guideline to describe
a design pattern, to manage imperfect documents. Currently, it is used by researchers
to communicate patterns with each other. [65] is a simple text database, which manages
patterns in the unit of item and can be search. The OMT charts are placed in documents
in the form of bitmap image.

On the other hand, a prototype system made in IBM T. J. Watson Research Center
[12] is an example focusing on a solution aspect of patterns. Regarding the formalization of
patterns, di�erences between [12] and ours are as follows:

i) [12] does not formalize structures, but only presents a bit-mapped pictures, while our
system generates �gures of structures dynamically from structure descriptions in PIML:

ii) On code generation, [12] uses macro expansion, while our system uses pseudo codes in
a simple language, and has the ability to generate source codes in several languages.

[12] focuses on supporting C++ code generation, but not on a repository to manage
patterns and source codes. On the other hand, we aim at constructing a repository to
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Figure 4.10: OMT chart

manage patterns and source codes integratedly.

Regarding structure formalization, there are related researches also in the areas of Software
Architecture [69, 70] and Adaptive Programming [37]. In these areas, management of struc-
ture information, source code generation and visualization are important themes, which are
closely related to our research. However, it is crucial that design patterns are more general
and more abstract structure description which are not speci�c to certain applications.

4.6 Concluding Remarks

In this chapter we propose a framework for managing design patterns as SGML documents.
A design pattern is divided into three elements; explanation texts, structure information
and pseudo codes. Structure information is formatted in SGML. We also designed a simple
language to describe the behaviors of methods, and are implementing a generator of code
fragments in a concrete language. The current target concrete language is Java. In ad-
dition, we provided the function to convert the structured documents into HTML format.
Converting is carried out per item.

By describing design patterns in the form of SGML documents, it becomes possible to
deal with design patterns on computers. Our prototype provides examples of how to deal
with design patterns on computers, browsing them and using them for source code generation
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support. Furthermore, there are other possibilities resulting from being SGML documents
such as circulation 
exibility and integration with SGML database systems.

In the future, we will study the following issues:

� PIML writing support

Support to write PIML is necessary, because description, in particular one for struc-
tures, is complicated and di�cult to keep integrity. Support to write PIML makes it
easy to describe experimental design patterns, and will result in contributing further
promotion of design pattern. A prototype for support mechanism is almost imple-
mented.

� Support for structure variations

The structure of a design pattern is in fact abstract, and has a lot of variations de-
pending on its usage. In our current system, the structure is �xed, and it is di�cult
to tailor such variations. Therefore, it is necessary to investigate allowable variations
of the structure and to extend our system to tailor them.

� Augmentation to an integrated CASE tool

From the standpoint of CASE tools view, our system, as a repository in particular,
needs a lot of functions such as version management, access control and so on. Because
some of these functions are already realized in existing CASE tools, we plan to integrate
such tools into our system. For example, to build a software automatically, the \make"
command is useful in managing dependency information. For version management, we
investigate to integrate existing version management applications such as RCS and
CVS.

Details of source code generation support are discussed in the next chapter.
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Chapter 5

Source Code Generation Support
Using Design Patterns

There are two reasons for supporting source code generation from design patterns: one is
to promote the use of design patterns, the other is to support the comprehension of source
code components by referring to design pattern components.

When using design patterns in practice, there are a lot of constraints and alternatives.
Users are often confused and have to repeat adapting them too often. Our goal is to promote
use of design patterns by providing constraints and alternatives opportunely and adapting
them in users' places.

On the other hand, structures based on design patterns are di�cult to be understand from
the standpoint of an application, because the structure is independent from problems which
the application solves. This causes increasing maintenance costs and increases the possibility
of unexpected destruction of such structure due to misunderstanding. To prevent such
problems, we aim at providing comprehension support by integrating source code components
and design patterns.

In general, there are two alternatives for integrating source code components and design
pattern components: one is to generate source codes from design patterns, the other is to
relate given source codes to design patterns. We focus on the former and the latter remains
as a future issue.

In this chapter, source code generation supporting system is discussed.

5.1 Issues for Source Code Generation Support

The description syntax of information needed for code generation must be determined by
considering issues as follows:

� Multiple and duplicated design patterns

An application can contain implementations generated from several patterns (including
ones generated from the same pattern)

� Duplicated roles

Several classes can be generated from one role
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Design Patterns
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Figure 5.1: Generation of classes from design patterns

� Alternatives at implementation

It is necessary to distinguish language-dependent ones and not.

� Variants

There are several variants for a pattern, which structure is slightly di�erent. Alterna-
tives at implementation can be considered as a kind of variant.

� How to describe relationships between patterns and classes

Relationships between patterns and classes should be maintained for comprehension
support.

There are relationships between patterns and classes (applications) generated from them as
indicated in Figure 5.1.

Intermediates are needed between design patterns and classes, because of the many to
many relationships. In our system, a structure called \Instantiated Pattern Structure" is
introduced as the intermediation. The instantiated pattern structure is called IPS in short.
Here to \instantiate" means to make an instance from a design pattern. An IPS expresses
not only an instantiated design pattern, but also a part of a class which behaves a certain
role in the pattern. In other words, an IPS keeps one of many to many relationships between
patterns and classes(Figure 5.2). An IPS must be distinguished by an identi�er, when the
same pattern is instantiated to another set of classes.

5.2 Code Generation Process

In this section, the process to generate concrete code fragments from structure information
and pseudo codes are described. To generate class codes from a given pattern, it is necessary
to build up a class tree with an ID and other information obtained by asking users while
tracing the a design pattern tree. In short, the process is as follows: First, a user selects a
pattern at the top node to include all classes to be generated, then he inputs one or more
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Figure 5.2: Relationships among design patterns, IPSs and classes

class identi�ers for each role. For each identi�er a class node is generated. Second, at each
class node, the user inputs identi�ers for aggregate and reference relations and methods of
the corresponding role. For each identi�er, a variable or a method node as a child of a class
node is generated. Third, at each method node, the user inputs identi�ers for arguments of
the method.

To be independent from a certain language, the above information is processed separately
from the one below. Then after the above information is satis�ed, the user can select a
language. The user supplements necessary speci�ers for classes and methods, and edits
method codes generated from pseudo codes.

As a result, information which must be supplied by a user. For example, identi�ers for
classes, aggregate and reference relations and methods as language independent information;
speci�ers, additional methods (option) and implementation of methods as language depen-
dent information. In addition, there are selections which may modify the structure of the
pattern brie
y. In our research, the selections are not dealt with yet. After the two kinds of
information are speci�ed, application description �les and codes are generated.

Start to make an application
↓

Select a pattern
↓

Instantiation
Input language independent information (name etc.)

↓
＜ IPS (Instantiated Pattern Structure) ＞

↓
Specialization
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Input language dependent information (speci�ers etc.)
↓

＜ Internal expression of the application ＞
↓

Source code generation

5.3 Cloning

When a class is cloned, sometimes other classes and methods must be cloned at the same
time. A role in a pattern is a template. Therefore, it corresponds to several classes in the
practical application. For example, ConcreteAggregate and ConcreteIterator in Iterator
pattern correspond to several concrete classes such as, SimpleList and SimpleListIterator,
SkipList and SkipListIterator, and so on. And an operation in a role may correspond
to several methods in a class. For example, CreateProduct operation in AbstractFactory

role corresponds to several methods corresponding to kinds of instantiated classed from
AbstractProduct role. We call generating several classes/methods from roles/operations
\cloning", and consider the necessary description and procedure to realize it. In other
words, we consider how to describe the cloning constraints among roles and operations, and
how to process the constraints.

5.3.1 Name Space

Before considering cloning constraints, name spaces to keep relationships among cloned ele-
ments (classes/methods) must be considered. It is necessary to relate relationships between
roles (inheritance, aggregate, reference) and reference in operations to generated class and
method names at code generation. Therefore, a pattern must be instantiated in the unit of
roles and operations de�ned in the pattern. The unit is called \System Label Space", which
is, in practice, a table containing pairs of a system label and a class or method.

When cloning, a new name space is generated. Elements cloned at the same time are
related to their system labels in the new name space. Other elements are taken over from
the previous name space. By this process, confusion by cloning can be prevented.

5.3.2 How to Describe Cloning Constraints

Two methods to describe the cloning constraints are considered. One is a method which
describe the consequences from an element to another element by a constraint, this is, when
a certain element is cloned, another elements must be cloned. The other is a method which
describe a set of elements to be cloned at the same time as a group.

The latter group is gotten by resolving consequences along constraints. By resolving,
it is easy to process cloning, since circulation of consequences is removed. In the group
description, however, a pattern author must be careful to satisfy constraints.

The constraints are as follows:

� Constraint from a parent class to child classes in an inheritance relationship

Whenever a super class is cloned, all sub classes must be cloned. On the other hand,
when a sub class is cloned, a super class is cloned only if there are special constraints.
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Figure 5.3: OMT chart for Abstract Factory Pattern

� Constraint from methods of a parent class to methods of child classes in a inheritance
relationship

Whenever an overridden method is cloned, methods overriding it are cloned. In the
reversed case, the overridden method is cloned.

� Constraint from a class to methods included in it

� Constraint from a method to methods called from it

� Constraint from a construction method to the class containing it

In these constraints, only the ones related to method call can be de�ned by a pattern author.
The others originate from the characteristics of object-oriented programs.

5.3.3 Example Using Abstract Factory Pattern

The following two kinds of constraint are selected concerning about Abstract Factory Pat-
tern, which is one of patterns containing the most complex constraints. Two cases are
evaluated, tracing consequences along the constraints and expanding them as groups.

Abstract Factory Pattern consists of four roles, AbstractFactory, ConcreteFactory,
AbstractProduct and ConcreteProduct. ConcreteFactory inherits AbstractFactory.
ConcreteProduct inherits AbstractProduct. AbstractFactory has an abstract operation
named CreateProduct, and ConcreteFactory overrides it. ConcreteFactory creates ob-
jects of ConcreteProduct by using the operation. Fig. 5.3 is an OMT chart for the Abstract
Factory Pattern.

There are two extra constraints written by a descriptor for the Abstract Factory Pattern.
One is \when cloning CreateProduct operation in AbstractFactory, then AbstractProduct
must be cloned. Vice versa." The other is \when cloning ConcreteFactory, ConcreteProduct
must be cloned. Vice versa." These constraints cannot be satis�ed at the same time. If
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the constrains can be satis�ed at the same time, cloning AbstractProduct invokes cloning
ConcreteProduct, then it invokes cloning ConcreteFactory.

The above constraints can be described by using expressions as follows. C[label](First; Second)
means \cloning First invokes cloning Second".

� By inheritance constraint (* means all elements)

{ C[inherit1](AbstractFactory; ConcreteFactory�)

{ C[inherit2](AbstractProduct; ConcreteProduct�)

� By override constraint

{ C[override1a](AbstractFactory:CreateProduct; ConcreteFactory�:CreateProduct)

{ C[override1b](ConcreteFactory:CreateProduct; AbstractFactory:CreateProduct)

� Constraints de�ned by a pattern descriptor

{ User Constraint 1

� C[userdef1a](AbstractFactory:CreateProduct;AbstractProduct)

� C[userdef1b](AbstractProduct;AbstractFactory:CreateProduct)

{ User Constraint 2

� C[userdef2a](ConcreteFactory; ConcreteProduct)

� C[userdef2b](ConcreteProduct; ConcreteFactory)

In this case, the remarkable point is the reason both C[userdef1a; b] and C[userdef2a; b]
must not be applied at the same time. If they are applied at the same time, relation-
ships between the methods called in ConcreteFactory.CreateProduct() (the constructor
ConcreteProduct()) and its classes (ConcreteProduct) would be super
uous. Not only
a constructor but also each method call, which has a one-to-one relationship to a class,
would have the same problem. From this view point, one solution, to mark the relationships
corresponding to classes and to clone them only if they include the methods.

The above constraints, indeed, can be converted into de�nitions of groups for cloning. In
this thesis, such group is called CloningTemplate. For example, Abstract Factory Pattern
contains two CloningTemplates as follows (Fig. 5.11):

CloningTemplate A (AbstractFactory::CreateProduct,

ConcreteFactory::CreateProduct,

AbstractProduct, ConcreteProduct)

CloningTemplate B (ConcreteFactory, ConcreteProduct)

To describe these template in PIML documents, three tags are introduced into PIML. The
grammar for the tags is indicated in Table 5.1.

For example, the above CloningTemplates in Abstract Factory Pattern are described as
follows:
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Table 5.1: Cloneable part of PIML structure syntax

Cloneables Cloneable* Set of cloneable templates.

Cloneable CloneElem* A cloneable template consists of elements
which must be cloned at the same time.

CloneElem type: Type; id: Identi�er An element has attributes type (role for role
or op for operation) and id for the target iden-
ti�er.

<cloneables>

<cloneable>

<celem type="role" id="AbstractProduct">

<celem type="role" id="ConcreteProduct">

<celem type="op" id="AbstractFactory::CreateProduct">

<celem type="op" id="ConcreteFactory::CreateProduct">

</cloneable>

<cloneable>

<celem type="role" id="ConcreteProduct">

<celem type="role" id="ConcreteFactory">

</cloneable>

</cloneables>

Steps for cloning using the templates are as follows:

i) Select the target CloningGroup.

ii) Name each element to be cloned and clone them.

iii) At the same time, clone the name space which elements belong. The cloned name
space contains other elements except for cloned elements

iv) Then, if the name space contains other cloning templates, relates them to the cloned
elements.

If there are same elements in the instantiated CloningTemplates, CloningGroups are
expanded or build newly. If there is not the same element in the ICTs, a new Cloning-
Group to contain each new ICT is created and added to the IPS.

v) The expanded or cloned CloneableGroups are again proposed to the user.
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Table 5.2: Input data for Iterator pattern

Role name → Class Name
Iterator → Iterator

Aggregate → List
ConcreteIterator → SimpleListIterator

ConcreteAggregate → SimpleList
Client → IteratorTest

Operation Name → Method Name
CreateIterator → createIterator

First → �rst
Next → next

isDone → isDone
CurrentItem → getCurrentItem

Relation Name → Variable Name
aggregate → list
iterator → iterator
target → target

5.4 Prototype Implementation Using Java

Based on the above analysis, a Java source code generation support system from design
patterns was designed and implemented. In concrete, from the separated process model, the
language-dependent part and the language-independent part are implemented separately,
and the language-dependent part can be replaced later (Figure 5.4). The three data struc-
tures for a design pattern, IPS and an application are de�ned using Composite pattern, and
classes to trace and convert each structure are implemented using Visitor pattern. Using
these patterns, localization and 
exibility are increased. For example, the process of out-
putting �nal source codes is localized in ApplicationVisitor class which traces the structure
for an application, and converts each node by tracing down recursively the tree structure
whose top is Project.

There are two problems for converting pseudo codes into concrete languages. The �rst is
how to describe and convert basic types in each language, and the second is how to describe
and convert aggregate types. The latter problem, in particular, is related to expansion
of forall statements, that is, statements expressing iteration. The statements must be
replaced with concrete statements for each selected type. To solve this problem, we pre-
pared a class called Aggregate, which de�nes actions of iteration for each type. The forall
statements are replaced with the de�ned actions in it.

As for the former, as the latter, we prepared a class de�ning basic types for each language.

5.4.1 Input and Output Example for Iterator Pattern

Suppose inputs as Table 5.2 for Iterator pattern.
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Figure 5.4: An overview of code generator

JAVAC = /usr/local/share/java1_1_1_ja/bin/javac

JAVA = java

CLASSPATH = -classpath .:/usr/local/share/java1_1_1_ja/lib/classes.zip

JAVAOPT = $(CLASSPATH)

CLASSES = SimpleListIterator.class SimpleList.class \

List.class Iterator.class IteratorTest.class

%.class: %.java

$(JAVAC) $(JAVAOPT) $<

all: IteratorPatternTest

IteratorPatternTest: $(CLASSES)

clean:

rm -f *.class *~

Figure 5.5: Generated Make�le

Output �les are generated as shown in Figure 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10 . These results
indicate that correct names corresponding to relationships are given to classes, valiables, op-
erations, and correct operation codes from pseudo codes. This code does not have application
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public interface Iterator {

public abstract boolean isDone ();

public abstract void next ();

public abstract void first ();

public abstract Object getCurrentItem ();

}

Figure 5.6: Generated Iterator class

public interface List {

public abstract Iterator createIterator ();

}

Figure 5.7: Generated List class

public class SimpleListIterator implements Iterator {

SimpleList target;

public boolean isDone () {

}

public SimpleListIterator (SimpleList list) {

target = list;

}

public void next () {

}

public void first () {

}

public Object getCurrentItem () {

}

}

Figure 5.8: Generated SimpleListIterator class

public class SimpleList implements List {

public Iterator createIterator () {

return new SimpleListIterator(this);

;

}

}

Figure 5.9: Generated SimpleList class

dependent codes at all, they must be supplimented by the developer.
In addition, these data can be input using an input method on a web browser.

5.4.2 Cloning Example Using Abstract Factory Pattern
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public class IteratorTest {

Iterator iterator;

List target;

}

Figure 5.10: Generated IteratorTest class

AbstractFactory

ConcreteFactory

CreateProduct()

CreateProduct()

Client

ConcreteProduct

AbstractProduct

Abstract Factory Pattern Structure

CloningTemplate A

CloningTemplate B

Figure 5.11: Cloning templates in Abstract Factory Pattern: A and B

First, suppose that a cloning template of Abstract Factory Pattern is instantiated as
shown in Fig 5.12. For convenience, the instantiated template is called ICT (Instantiated
Cloning Template). In addition to ICT, a group is introduced, which contains one or more
than one ICTs and provides a constraint for users. Moreover, when cloning a pattern contain-
ing several cloning templates, if a cloning template is instantiated and its roles or methods
are shared with other templates, at the next cloning, all contained templates must be cloned
around the shared parts. By describing the constraints as cloning groups, all the roles and
methods can be cloned.

For example, when instantiating AbstractFactory, suppose that WidgetFactory which
exchanges window systems are instantiated such as in Figure 5.12. Then instantiated cloning
templates (ICTs) are indicated as ICT A1 and ICT B1 in Figure 5.13.

This time, cloning groups (CGs) are indicated as in Figure 5.14.
For example, imagine what happens if you select CG B1, and clone it, then change two

classes of them to PMWidgetFactory and PMWindow. We must pay attention not only to ICT
B1 but also to ICT A1 that is cloned and the cloned classes are replaced. Thus, because the
new ICT A2 shared a part of A1, the new CG A1 must include both ICT A1 and ICT A2.

All classes at this time are as shown in Figure 5.15. ICT A2 and B2 are indicated in
Figure 5.16.

This time, cloning groups are shown in Figure 5.17.
In this state, suppose that CG A is selected and cloned. The elements to be named

except for doubled ones are developed as follows:

CloningGroup A {

WidgetFactory::CreateWindow,

MotifWidgetFactory::CreateWindow,
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Instantiated Abstract Factory Pattern Structure

WidgetFactory
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Window
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Figure 5.12: Cloning step 1

WidgetFactory

CreateWindow()

MotifWidgetFactory

CreateWindow()

Window

MotifWindow

Creator

ICT A1
WidgetFactory

CreateWindow()

MotifWidgetFactory

CreateWindow()

Window

MotifWindow

Creator

ICT B1

Figure 5.13: Instantiated cloneable templates, A1 and B1

WidgetFactory

CreateWindow()

MotifWidgetFactory

CreateWindow()

Window

MotifWindow

Creator

CG 1

CG 2

Figure 5.14: Cloning groups at step 1, CG 1 and CG 2

PMWidgetFactory::CreateWindow,

Window,

MotifWindow,

PMWindow

}

In other words, these are elements related to \Window". Then if \Window" is replaced
\ScrollBar" and cloned, they are shown as follows. It shows complete cloning without name
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Instantiated Abstract Factory Pattern Structure

WidgetFactory
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MotifWidgetFactory
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Figure 5.15: Cloning step 2
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WidgetFactory
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PMWidgetFactory

CreateWindow()
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Figure 5.16: ICTs at cloning step 2, A1, A2, B1 and B2

confusion.
Figure 5.19 shows current ICTs, A1{4 and B1{4.

5.5 Related Works

Usual code generation systems, for example, CASE tools such as ROSE [44], support code
generation using designing models for problems handled by an application. On the other
hand, the code generation system using design patterns supports introducing problem-
independent structures such as frameworks. Both problem-dependent and problem-independent
structures should be supported. However, the former has already been studied in CASE tools,
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Figure 5.17: Cloning groups at step 2

Instantiated Abstract Factory Pattern Structure
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Figure 5.18: Cloning step 3

in this thesis the latter is studied.
There are several code generation systems using design patterns. In addition to IBM

T. J. Watson Laboratory's system described in the previous chapter, Utrecht University's
system [66] and so on. The di�erence from Utrecht University's system is that it generates
codes by copying classes prepared for a certain design pattern. The problem with this
generation method is that constraints to clone classes at the same time are not implemented.
In other words, a user must take care of which classes to be copied together.
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Figure 5.19: ICTs at step 3

5.6 Concluding Remarks

To promote the use of design patterns and to support the comprehension of an application
by providing connections among design pattern components and source code components,
we proposed a source code generation support system, designed it, and implemented a part
of it. In concrete, we implemented Java source code generation support system using Java
language. The language dependent part is separated from main generation support mecha-
nism by designing the separated process model, therefore it can be applied to other languages
easily.
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Support for use of design patterns is achieved by decreasing complicated repetition. How-
ever, integration with source codes components, is not achieved yet.

There are future issues as follows:

� Integration with class components

� Support for reverse engineering

To relate design patterns to source codes, source codes are generated from design
patterns in our current system. However, reverse engineering, i. e. abstracting existing
source codes to extract patterns corresponding to them is required for practical use. It
is di�cult to analyze the structure of source codes automatically. Therefore, we plan
to do this through the interaction between the system and users.
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Chapter 6

Conclusion

This thesis aims to foster the reuse of object-oriented software components shared by
software developers in distributed environments. Frameworks to share components and
relate them each other are necessary. For the �rst step to develop the frameworks, we
provide two basic frameworks: a distributed component repository for class components and
a structured document framework to deal with design patterns as components.

6.1 Distributed Component Repository and Class

Components

We aim to manage various object-oriented software components which are connected each
other. We proposed a system using the hypertext model and implemented a prototype.
This prototype targets class components because they are basics for other object-oriented
software components such as modules, libraries, speci�cations and patterns. The classes are
extracted from source codes as fundamental units of object-oriented software components.
The purpose of dealing with classes as components is relating them to other object-oriented
software components. Class components are necessary to have several views as versions. In
this thesis, from the point of view of reuse, we provide public and non-public views of a class
component and express them as two hypertext nodes. If users need to modify a class, they
can obtain the non-public node. If not, they can obtain only the public node.

Because components must be dealt with in distributed environments we adopt WWW
(World Wide Web) as a distributed hypertext. To realize distribution transparency on
WWW, we add a server to manage a ID-location table to it, and manage consistency of
tables among servers. By putting an identi�er as an argument for a CGI (Common Gate-
way Interface) program in any document, users can obtain a public interface node of the
class component from the repository. In other words, users can access a class components
regardless of its physical location, by querying the identi�er to the ID-location management
server through CGI, obtaining its location, and displaying the corresponding node. We call
the mechanism a \distributed component repository".

Furthermore, in order to use usual libraries in our prototypes, we provide a mechanism to
extract class information from C++ source codes and generate hypertext nodes correspond-
ing classes. Because most libraries are provided with C++, we believed that it was suitable
as subjects for the class component extraction mechanism. In practice, several classes in a
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C++ library (actually the GNU C++ library) are registered in our distributed component
repository, then they can be listed out and obtained through the list. Now, the extraction
mechanism targets C++, however, it is independent from the distributed component repos-
itory. Therefore, it is possible to provide extraction mechanisms for any other languages.

Our distributed component repository provides a basis for sharing object-oriented com-
ponents in distributed development environments, by using a framework of a distributed
hypertext. A reuser (a user who wants to reuse components) can browse components by
following relationships among them and obtain them without concerning their physical lo-
cation. On the other hand, a provider of components can provide his/her own components
regardless of the reuser's location, by registering them into our repository.

Now class components can be registered and reused in our repository. For example,
the provider can put a URL consisting of the CGI program in our system and the class
component ID in such documents as introduction documents. It is not necessary for the
provider to concern e�ects by arranging structure and location of the source code �les. The
reuser can obtain the proposed class in hypertext format from the documents through the
CGI program and follow classes related to the class by our system. We again point out that
it is di�cult to comprehend the class with only classes as now. We argue that a mechanism
to share such design ideas and concepts as design patterns is necessary, and discuss the
mechanism in this thesis.

Our repository mechanism can be used for the case in which data are distributed on
the network. The case is di�cult for a centralized repository to deal with. Our repository
can collaborate with a single or centralized repository in managing distributed data as an
assistant. In other words, it is possible to publish and browse object-oriented software com-
ponents among cooperated organizations in their own repositories, by applying the sharing
mechanism to them. However, we should consider how to register and update components
shared by an internal repository and our distributed repository, and interoperability of data
on practical use. Now a component provider selects class components to be shared and reg-
isters them by hand. In more concrete, he/she inputs source code �les into the registration
client program to register classes into the repository.

Extending distributed management mechanism is also a future issue. It includes adding
facilities for cache and update noti�cation. Version management should be considered.

6.2 Design Pattern Components

There are two purposes in dealing with design patterns as components. One is that it makes
design support easy by providing electrical forms for them, because they are e�cient to
design reusable frameworks. The other is that it makes framework users easy to under-
stand their structure, by realizing mutual relationships among design patterns and classes.
Characteristics of our research are as follows:

First, we considered design patterns to be documents with semantics structure, and de-
signed the document structure re
ecting the semantics structure based on SGML. It enabled
us to make a catalogue of, manage, share and publish design patterns like various documents
which have been already applied to SGML.

Secondly, the structured document based on SGML contains not only information de-
scribed in plain texts but also information described by �gures and pseudo codes which
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cannot be described in plain texts. Because these descriptions relate to each other closely
when browsing them and code generation, it is di�cult to maintain consistency in usual
formats in which they are separated.

Thirdly, for searching and browsing the integrated SGML description, we provide a dy-
namic generation and display system of description items and structure �gures on demand
for WWW browsers. By the generator, the user does not need to be concerned that design
patterns are described structurally in SGML.

By dealing with design patterns as components in the form mentioned above, we can deal
with them as software components. Therefore, they can be managed and used integrating
other components, for example, source codes through code generation. The author of design
patterns can describe design patterns as uniformed documents which can be processed in
computers, then can check their consistency. Because SGML is a standard for electric com-
merce, the described design patterns can be published in wide area. The user can obtain
published design patterns, and also can process them in a computer. Moreover, the user
can browse design patterns on a WWW browser, and can get support by a computer at
implementing them in practice.

Next we go on to describe the source code generation system mentioned in the previous
chapter. The current target language in the generation system is Java, however, it is not
limited to Java. The generation system can be applied such other languages as C++ and
Smalltalk, by exchanging grammar description modules. Because Java is simpler than C++
as a object-oriented language, we considered that it is suitable for source code generation
mechanism.

Source code generation support system aims to supply the necessary information in design
patterns automatically. The information to be used for source code generation includes
two kinds: information described in the \structure" item including the number of member
classes, relationships among them and attributes and behaviors of them, and information
described in the \implementation" item as trade-o�s. In this thesis, we provide a pseudo
code framework in addition to the SGML framework to describe the former information in
PIML documents, and use the information at source code generation.

Therefore, a programmer using the source code generation support system can obtain
not only a set of skeleton codes including classes which satisfy constraints of relationships
(inheritance, reference, aggregate, creation and method call), but also method implemen-
tation codes if the operation in a design pattern corresponding to the method has pseudo
codes. The generation of a whole application automatically is not the research subject. To
begin with, design patterns are the knowledge to design classes to obtain 
exibility and ex-
tendibility. Therefore, our generation system can generate only the implementation for the
structure. Furthermore, such a subject can generate codes from an algorithm which requires
studies of frameworks to deal with algorithms as components and to handle them like our
research.

By providing a framework to describe design patterns as SGML documents and mecha-
nisms for processing them which include a source code generation mechanism, reuse of design
patterns as components are fostered. Henceforth, it is necessary to foster reuse of source
codes by relating design patterns and source codes. The integration of source codes and
design pattern components has not been achieved but a foundation has been built. For the
integration, a format for storing in �les must be discussed. There are some formats to be
considered such as, SGML, source code with comments, a literate programming format such
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as NoWeb. For example, in Java, a mechanism for putting tags using comments into source
codes are provided. In Perl, a document generating mechanism called POD is provided. In
C++ development environments, there are a lot of formats to describe comments. CDIF is
a standard for de�ning formats to exchange information among various CASE tools. Which
is the best choice for saving source codes as components? We must discuss further.

Furthermore, as for other components, for example, speci�cations are not dealt with
now, because several research teams have provided such a mechanism to realize relationships
among them and source codes. More conceptual components as architecture is a future issue
after design pattern components are achieved. We would like to integrate the components
into our system. We are also considering the applicability of research to reverse engineering
for design patterns [50] by relating class information to design pattern information. At the
same time, we develop a support system to describe PIML documents.
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Appendix A

DTD for PIML

<!SGML "ISO 8879:1986"

CHARSET BASESET

"ISO 646-1983//CHARSET International Reference Version (IRV)//ESC 2/5 4/0"

DESCSET 0 9 UNUSED

9 2 9

11 2 UNUSED

13 1 13

14 18 UNUSED

32 95 32

127 1 UNUSED

128 127 128

255 1 UNUSED

CAPACITY PUBLIC "ISO 8879-1986//CAPACITY Reference//EN"

SCOPE DOCUMENT

SYNTAX -- PUBLIC "ISO 8879-1986//SYNTAX Reference//EN" --

SHUNCHAR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 127 255

BASESET

"ISO 646-1983//CHARSET International Reference Version (IRV)//ESC 2/5 4/0"

DESCSET 0 256 0

FUNCTION

RE 13

RS 10

SPACE 32

TAB SEPCHAR 9

NAMING

LCNMSTRT ""

UCNMSTRT ""

LCNMCHAR "_-."

UCNMCHAR "_-."

NAMECASE

GENERAL YES

ENTITY NO

DELIM

GENERAL SGMLREF

SHORTREF SGMLREF

NAMES SGMLREF

QUANTITY SGMLREF

NAMELEN 32

LITLEN 1000
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ATTCNT 100

FEATURES

MINIMIZE DATATAG NO OMITTAG YES RANK YES SHORTTAG YES

LINK SIMPLE NO IMPLICIT NO EXPLICIT NO

OTHER CONCUR NO SUBDOC NO FORMAL NO

APPINFO "Pattern Information Markup Language"

>

<!DOCTYPE piml [

<!ELEMENT piml - - (pattern) >

<!ELEMENT pattern - - (intent? & motivation? &

applicability? & consequences? &

implementation? &

sample_code? & known_uses? &

related_patterns? &

structure?) >

<!ELEMENT intent - - (RCDATA) >

<!ELEMENT motivation - - (RCDATA) >

<!ELEMENT applicability - - (RCDATA) >

<!ELEMENT consequences - - (RCDATA) >

<!ELEMENT implementation - - (RCDATA) >

<!ELEMENT sample_code - - (RCDATA) >

<!ELEMENT known_uses - - (RCDATA) >

<!ELEMENT related_patterns - - (RCDATA) >

<!ELEMENT structure - - (notes? & relations? &

cloneables? & roles & layout) >

<!ELEMENT notes - - (#PCDATA) >

<!ELEMENT relations - - (inheritance* & reference* &

aggregate* & creation* ) >

<!ELEMENT cloneables - - (cloneable+) >

<!ELEMENT roles - - (role+) >

<!ELEMENT layout - - (box+) >

<!ELEMENT inheritance - O (EMPTY) >

<!ELEMENT reference - O (EMPTY) >

<!ELEMENT aggregate - O (EMPTY) >

<!ELEMENT creation - O (EMPTY) >

<!ELEMENT cloneable - - (celem+) >

<!ELEMENT celem - O (EMPTY) >

<!ELEMENT role - - (notes? & operations?) >

<!ELEMENT operations - - (operation+) >

<!ELEMENT operation - O (EMPTY) >

<!ELEMENT box - O (EMPTY) >

<!ATTLIST pattern name NAME #REQUIRED

alias NAMES #IMPLIED>

<!ATTLIST inheritance to NAME #REQUIRED

from NAME #REQUIRED>
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<!ATTLIST aggregate to NAME #REQUIRED

from NAME #REQUIRED

number (many|single) single>

<!ATTLIST reference to NAME #REQUIRED

from NAME #REQUIRED

number (many|single) single>

<!ATTLIST creation to NAME #REQUIRED

from NAME #REQUIRED>

<!ATTLIST celem type (role|op) #REQUIRED

id NAME #REQUIRED>

<!ATTLIST role syslabel NAME #REQUIRED

abstract (abstract|concrete) concrete>

<!ATTLIST operation syslabel NAME #REQUIRED

override (done|do|not) not

return NAME #REQUIRED

access (public|protected|

privateprotected|private) public>

<!ATTLIST layout rows NUMBER #REQUIRED

columns NUMBER #REQUIRED>

<!ATTLIST box name NAME #REQUIRED

row NUMBER #REQUIRED

column NUMBER #REQUIRED>

]>
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Appendix B

Pseudo Code Syntax

statements:

statement

| statements statement

;

statement:

method_call

| if_statement

| forall_statement

| return_statement

| assign_statement

| dummy_statement

;

method_call:

method

| Identifier . method

| Identifier :: method

| constructor_call

;

constructor_call:

new method

| new Identifier :: method

;

method:

Identifier ( )

| Identifier ( args )

;

args:

Identifier

| Identifier , args

;

if_statement:

if ( condition ) { statements }

| if ( condition ) { statements } else { statements }

;

forall_statement:

forall Identifier in Identifier { statements }

;

condition:

Dummy

;
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dummy_statement:

Dummy

;

return_statement:

return method_call

| return Identifier

;

assign_statement:

Identifier = Identifier

| Identifier = method_call

;
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Appendix C

PIML Example (Iterator Pattern)

In this example, the `&endtago;' entity in place of `</' exists in several elements. It is necessary because the motivation

and the other elements are RCDATA and cannot include `</'.

<pattern name="Iterator" alias="Cursor">

<intent>

Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation.

</intent>

<motivation>

An aggregate object such as a list should give you a way to access its

elements without exposing its internal structure. Moreover, you might

want to traverse the list in different ways, depending on what you want

to accomplish. But you probably don't want to bloat the List interface

with operations for different traversals, even if you could anticipate

the ones we'll need. You might also need to have more than one traversal

pending on the same list.

<p>

The Iterator pattern lets you do all this. The key idea in this pattern

is to take the responsibility for access and traversal out of the list

object and put it into an <B>iterator&endtago;B>object. The Iterator class

defines an interface for accessing the list's elements. An iterator

object is responsible for keeping track of the current element; that is,

it knows which elements have been traversed already.

<p>

For example, a List class would call for a ListIterator with the

following relationship between them:

<IMG SRC="./ListIterator.gif">

<P>

Before you can instantiate ListIterator, you must supply, the List to

traverse. Once you have the ListIterator instance, you can access the

list's elements sequentially. The CurrentItem operation return the

current element in the list, First initializes the current element to

the first element, Next advances the current element to the next

element, and IsDone test whether we've advanced beyond the last

element-that is, we're finished with the traversal.

<P>

Separating the traversal mechanism from the List object lets us define

iterators for different traversal policies without enumerating them

in the List interface. For example, FilteringListIterator might provide

access only to those elements that satisfy specific filtering

constraints.

<p>

Notice that the iterator and the list are coupled, and the client must

know that is is a list that's traversed as opposed to some other

aggregate structure. It would be better if we could change the aggregate

class without changing client code. We can do this by generalizing the

iterator concept to support <B>polymorphic iteration&endtago;B>.

<P>

As an example, let's assume that we also have a SkipList implementation
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of a list. A skiplist is a probabilistic data structure with

characteristics similar to balanced trees. We want to be able to write

code that works for both List and SkipList objects.

<P>

We define an AbstractList class that provides a common interface for

manipulating lists. Similarly, we need an abstract Iterator class that

defines a common iteration interface. Then we can define concrete

Iterator subclasses for the different list implementations. As a result,

the iteration mechanism becomes independent of concrete aggregate

classes.

<P>

The remaining problem is how to create the iterator. Since we want to

write code that's independent of the concrete List subclasses, we cannot

simply instantiate a specific class. Instead, we make the list objects

responsible for creating their corresponding iterator. This requires an

operation like CreateIterator through which clients request an iterator

object.

<P>

CreateIterator is an example of a factory method (see Factory

Method). We use it here to let a client ask a list object for the

appropriate iterator. The Factory Method approach give rise to two class

hierarchies, one for lists and another for iterators. The CreateIterator

factory method "connects" the two hierarchies.

</motivation>

<applicability>

Use the iterator pattern

<UL>

<LI>to access an aggregate object's contents without exposing its

internal representation.

<LI>to support multiple traversals of aggregate objects.

<LI>to provide a uniform interface for traversing different aggregate

structures (that is, to support polymorphic iteration).

&endtago;UL>

</applicability>

<consequences>

The Iterator pattern has three important consequences:

<P>

<OL>

<LI>It supports variations in the traversal of an aggregate. Complex

aggregates may be traversed in many ways. For example, code

generation and semantic checking involve traversing parse

trees. Code generation may traverse the parse tree inorder or

preorder. Iterators make it easy to change the traversal

algorithm: Just replace the iterator instance withe a different

one. You can also define Iterator subclasses to support new

traversals.

<LI>Iterators simplify the Aggregate interface. Iterator's traversal

interface obviates the need for a similar interface in Aggregate,

thereby simplifying the aggregate's interface.

<LI>More than one traversal can be pending on an aggregate. An

iterator keeps track of its own traversal state. Therefore you

can have more than in progress at once.

&endtago;OL>

</consequences>

<implementation>

Iterator has many implementation variants and alternatives. Some

important ones follow. The trade-offs often depend on the control

structures your language provides. Some language even support this

pattern directly.

<OL>

<LI>Who controls the iteration? A fundamental issue is deciding which

party controls the iteration, the iterator or the client that uses

the iterator. When the client controls the iteration, the iterator

is called an external iterator, and when the iterator controls it,

the iterator is an internal iterator. Clients that use an external
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iterator must advance the traversal and request the next element

explicitly from the iterator. In contrast, the client hands an

internal iterator an operation to perform, and the iterator

applies that operation to every element in the aggregate.

<P>

External iterators are more flexible than internal iterators. It's

easy to compare two collections for equality with and external

iterator, for example, but it's practically impossible with

internal iterators. Internal iterators are especially weak in a

language like C++ that does not provide anonymous functions,

closures, or continuations like Smalltalk and CLOS. But on the

other hand, internal iterators are easier to use, because they

define the iteration logic for you.

<LI>Who defines the traversal algorithm? the iterator is not the only

place where the traversal algorithm can be defined. the aggregate

might define the traversal algorithm and use the iterator to store

just the state of the iteration. We call this kind of iterator a

cursor, since it merely points to the current position in the

aggregate. A client will invoke the Next operation on the

aggregate with the cursor as an argument, and the Next operation

will change the state of the cursor.

<BR>

If the iterator is responsible for the traversal algorithm, then

it's easy to use different iteration algorithms on the same

aggregate, and it can also be easier to reuse the same algorithm

on difference aggregates. On the other hand, the traversal

algorithm might need to access the private variables of the

aggregate. If so, putting the traversal algorithm in the iterator

violates the encapsulation of the aggregate.

<LI>How robust is the iterator? It can be dangerous to modify an

aggregate while you're traversing it. If elements are added or

deleted from the aggregate, you might end up accessing an element

twice or missing it completely. A simple solution is to copy the

aggregate and traverse the copy, but that's too expensive to do in

general.

<BR>

A robust iterator ensures that insertions and removals won't

interfere with traversal, and it does it without copying the

aggregate. There are many ways to implement robust iterators. Most

rely on registering the iterator with the aggregate. On insertion

or removal, the aggregate either adjusts the internal state of

iterators it has produced, or it maintains information internally

to ensure proper traversal.

<BR>

Kofler provides a good discussion of how robust iterators are

implemented in ET++[Kof93]. Murray discusses the implementation of

robust iterators for the USL StandardComponents' List class

[Mur93].

<LI> Additional Iterator operations. The minimal interface to Iterator

consists of the operations First, Next IsDone, and

CurrentItem. Some additional operations might prove useful. For

example, ordered aggregate can have a Previous operation that

positions the iterator to the previous element. A SkipTo operation

is useful for sorted or indexed collections. SkipTo positions the

iterator to an object matching specific criteria.

<LI> Using polymorphic iterators in C++. Polymorphic iterators have

their cost. They require the iterator object to be allocated

dynamically by a factory method. Hence they should be used only

when there's a need for polymorphism. Otherwise use concrete

iterators' which can be allocated on the stack.

Polymorphic iterators have another drawback: the client is

responsible for deleting them. This is error-prone, because it's

easy to forget to free a heapallocated iterator object when you're

finished with it. That's especially likely when there are multiple

exit points in an operation. And if an exception is triggered, the

iterator object will never be freed.

<BR>

Th ##p:Proxy## pattern provides a remedy. We can use a

stack-allocated proxy as a stand-in for the real iterator. The
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proxy deletes the iterator in its destructor. Thus when the proxy

goes out of scope, the real iterator will get deallocated along

with it. The proxy ensures proper cleanup, even in the face of

exceptions. This is an application of the well-known C++ technique

"resource allocation is initialization" [ES90]. The Sample Code

gives an example.

<LI> Iterators may have privileged access. An iterator can be viewed as

an extension of the aggregate that created it. The iterator and

the aggregate are tightly coupled. We can express this close

relationship in C++ by making the iterator a friend of its

aggregate. Then you don't need to define aggregate operations

whose sole purpose is to let iterators implement traversal

efficiently.

<BR>

However, such privileged access can make defining new traversals

difficult, since it'll require changing the aggregate interface to

add another friend. To avoid this problem, the Iterator class can

include protected operations for accessing important but publicly

unavailable members of the aggregate. Iterator subclasses(and only

Iterator subclasses) may use these protected operations to gain

privileged access to the aggregate.

<LI> Iterators for composites. External iterators can be difficult to

implement over recursive aggregate structures like those in the

##p:Composite## pattern, because a position in the structure may

span many levels of nested aggregates. Therefore an external

iterator has to store a path through the Composite to keep track

of the current object. Sometimes it's easier just to use an

internal iterator. It can record the current position simply by

calling itself recursively, thereby storing the path implicitly in

the call stack.

<BR>

If the nodes in a Composite have an interface for moving from a

node to its siblings, parents, and children, then a cursor-based

iterator may offer a better alternative. The cursor only needs to

keep track of the current node; it can rely on the node interface

to traverse the Composite.

<BR>

Composites often need to be traversed in more than one

way. Preorder, postorder, inorder, and breadth-first traversals

are common. You can support each kind of traversal with a

different class of iterator.

<LI> Null iterators. A NullIterator is a degenerate iterator that's

helpful for handling boundary conditions. By definition, a

NullIterator is always done with traversal; that is, its IsDone

operation always evaluated to true.

<BR>

NullIterator can make traversing tree-structured aggregates (like

Composites) easier. At each point in the traversal, we ask the

current element for an iterator for its children. Aggregate

elements return a concrete iterator as usual. But leaf elements

return an instance of NullIterator. That let us implement

traversal over the entire structure in a uniform way.

&endtago;OL>

</implementation>

<sample_code>

We'll look at the implementation of a simple List class, which is part of

our foundation library. We'll show two Iterator

implementations, one for traversing the List in front-to-back order,

and another for traversing back-to-front (the foundation library

supports only the first one). Then we show how to use these iterators

and how to avoid committing to a particular implementation. After

that, we change the design to make sure iterators get deleted

properly. The last example illustrates an internal iterator and

compares it to its external counterpart.

</sample_code>

<known_uses>
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Iterators are common in object-oriented systems. Most collection

class libraries offer iterators in one form or another.

<P>

Here's an example from the Booch components, a popular collection

class library. It provides both a fixed size (bounded) and dynamically

growing (unbounded) implementation of a queue. The queue interface is

defined by an abstract Queue class. To support polymorphic iteration

over the different queue implementations the queue iterator is

implemented in the term of the abstract Queue class interface. This

variation has the advantage that you don't need a factory method to

ask the queue implementations for their appropriate iterator. However,

it requires the interface of the abstract Queue class to be powerful

enough to implement the iterator efficiently.

<BR>

Iterators don't have to be defined as explicitly in Smalltalk. The

standard collection classes (Bag, Set, Dictionary, OrderedCollection,

String, etc)define an internal iterator method do:, which takes a

block(i.e., closure) as an argument. Each element in the collection is

bound to the local variable in the block; then the block is

executed. Smalltalk also includes a set of Stream classes that

support an iteratorlike interface. ReadStream is essentially an

Iterator, and it can act as an external iterator for all the

sequential collections. There are no standard external iterators for

nonsequential collections such as Set and Dictionary.

<P>

Polymorphic iterators and the cleanup Proxy described earlier are

provided by the ET++ container classes. The Unidraw graphical editing

framework classes use cursor-based iterators.

<P>

Object Windows2.0 provides a class hierarchy of iterators for

containers. You can iterate over different container types in the same

way. The ObjectWindow iteration syntax relies on overloading the

postincrement operatior ++ to advance the iteration.

</known_uses>

<related_patterns>

##p:Composite##: Iterator are often applied to recursive structures such as

Composites.

<P>

##p:FactoryMethod##: Polymorphic iterators rely on factory methods to

instantiate the appropriate Iterator subclass.

<p>

##p:Memento##: is often used in conjunction with the Iterator pattern.

An iterator can use a memento to capture the state of an iteration.

The iterator stores the memento internally.

</related_patterns>

<structure>

<!--

Structure of Iterator Pattern -->

<notes>

A ConcreteIterator keeps track of the current object

in the aggregate and can compute the succeeding object

in the object in the traversal.

</notes>

<relations>

<inheritance origin="ConcreteIterator" target="Iterator">

<inheritance origin="ConcreteAggregate" target="Aggregate">

<reference origin="Client" target="Iterator"

syslabel="iterator">

<reference origin="Client" target="Aggregate"

syslabel="aggregate">

<reference origin="ConcreteIterator" target="ConcreteAggregate"

syslabel="concreteaggregate">

<creation origin="ConcreteAggregate" target="ConcreteIterator">

</relations>

<cloneables>
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<cloneable>

<celem type="class" id="Composite">

</cloneable>

<cloneable>

<celem type="class" id="Leaf">

</cloneable>

<cloneable>

<celem type="op" id="Component::Operation">

<celem type="op" id="Composite::Operation">

<celem type="op" id="Leaf::Operation">

</cloneable>

</cloneables>

<roles>

<!--

Iterator Role

-->

<role syslabel="Iterator" abstract="abstract">

<notes>

<ul>

<li> define an interface for accessing and traversing elements.

&endtago;ul>

</notes>

<operations>

<!-- Operations included in Iterator Role -->

<operation override="done"

access="public" return="void"

syslabel="First">

<notes>

</notes>

</operation>

<operation override="done"

access="public" return="void"

syslabel="Next">

<notes>

<!-- Information of Operation -->

</notes>

</operation>

<operation override="done"

access="public" return="boolean"

syslabel="isDone">

<notes>

</notes>

</operation>

<operation override="done"

access="public" return="anytype"

syslabel="CurrentItem">

<notes>

</notes>

</operation>

</operations>

</role>

<!--

ConcreteIterator Role

-->

<role syslabel="ConcreteIterator" abstract="concrete">

<notes>

<ul>

<li> Implements the Iterator interface

<li> keep track of the current position in the traversal of the aggregate.

&endtago;ul>

</notes>
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<operations>

<!--

Operations included in ConcreteIterator Role

-->

<operation override="do" constructor="constructor"

access="public" return="ConcreteIterator"

syslabel="ConcreteIterator">

<args>

<arg syslabel="target" type="ConcreteAggregate">

</args>

<notes>

</notes>

<pseudocode>

"aggregate" = "target"

</pseudocode>

</operation>

<operation override="do"

access="public" return="void"

syslabel="First">

<notes>

</notes>

<pseudocode>

</pseudocode>

</operation>

<operation override="do"

access="public" return="void"

syslabel="Next">

<notes>

</notes>

</operation>

<operation override="do"

access="public" return="boolean"

syslabel="isDone">

<notes>

</notes>

</operation>

<operation override="do"

access="public" return="anytype"

syslabel="CurrentItem">

<notes>

</notes>

</operation>

</operations>

</role>

<!--

Aggregate Role

-->

<role syslabel="Aggregate" abstract="abstract">

<notes>

<ul>

<li> defines an interface for creating an Iterator object.

&endtago;ul>

</notes>

<operations>

<operation constructor="noconstructor" override="done"

access="public" return="Iterator"

syslabel="CreateIterator">

<notes>

</notes>
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</operation>

</operations>

</role>

<!--

ConcreteAggregate Role

-->

<role syslabel="ConcreteAggregate" abstract="concrete">

<notes>

<ul>

<li> implements the Iterator creation interface

to return an interface of the proper ConcreteIterator.

$endtago;ul>

</notes>

<operations>

<!-- Operations included in Unknown Role -->

<operation constructor="noconstructor" override="do"

access="public" return="Iterator"

syslabel="CreateIterator">

<notes>

<!-- Information of Operation -->

</notes>

<pseudocode>

return new "ConcreteIterator" ( "this" )

</pseudocode>

</operation>

</operations>

</role>

<!--

Client Role

-->

<role syslabel="Client" abstract="concrete">

<notes>

<!-- Information of Client Role -->

</notes>

</role>

</roles>

<cloneables>

<cloneable>

<celem type="role" id="ConcreteAggregate">

<celem type="role" id="ConcreteIterator">

</cloneable>

</cloneables>

<layout rows="2" columns="3">

<box name="Aggregate" row="1" column="1">

<box name="ConcreteAggregate" row="2" column="1">

<box name="Iterator" row="1" column="3">

<box name="ConcreteIterator" row="2" column="3">

<box name="Client" row="1" column="2">

</layout>

</structure>

</pattern>


