
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Student Log Analysis Functions for Web-based
Programming Education Support Tool pgtracer

Tetsuro Kakeshita1,a) Kosuke Ohta1

Received: May 5, 2018, Revised: November 29, 2018,
Accepted: March 11, 2019

Abstract: We are developing a programming education support tool pgtracer as a plug-in of well-known Web-based
Learning Management System Moodle. Pgtracer provides fill-in-the-blank questions composed of a C++ program
and a trace table to students. When a student answers a question by filling the blanks, pgtracer automatically collects
student’s answers, required time, evaluation result, etc. as student log. In this paper, we propose and evaluate seven
analysis functions of the student log. The student log analysis functions are classified into the analysis functions of
a student, those of a question, and those of an answering process. A teacher can analyze achievement level of the
students and difficulty level of the problems utilizing the analysis functions. Some of the functions are also provided to
the students as student feedback functions. We perform a preliminary evaluation of the analysis functions against two
teachers teaching computer programming to demonstrate the usefulness of the proposed functions. We also perform an
evaluation experiment at an actual class and demonstrate usability of the student feedback functions. The two teachers
and more than 80% of the students positively appreciate the proposed functions through our survey evaluation.

Keywords: learning analytics, e-Learning, computer programming, fill-in-the-blank question, Moodle

1. Introduction

Computer programming is essential at universities particularly
majored in engineering and science. However there are obsta-
cles in programming education since student’s ability is declin-
ing due to the increase of the students at higher education. The
lack of support staff for programming education is frequently ob-
served. It is important for a student to learn computer program-
ming through exercise with an appropriate level according to the
achievement level of the student.

We are developing a programming education support tool pg-
tracer [1], [2], [3]. Pgtracer is developed as a plug-in of a well-
known learning management system Moodle so that a student can
use pgtracer at any time and place as long as the internet connec-
tion and a personal computer are provided.

A teacher can create fill-in-the-blank questions using pgtracer.
A fill-in-the-blank question is composed of a C++ program and
a trace table representing the execution order of the statements
and the values of the valuables at each step. A teacher can define
various types of blanks within the question.

A student performs an exercise by filling out the blanks. Pg-
tracer automatically evaluates the submitted answers and pro-
vides the score to the student. Pgtracer also collects student log
record each time a student fills a blank. The log record contains
student’s answer, required time, evaluation result etc.

In this paper, we propose seven analysis functions for the col-
lected log records. The aims of the analysis functions are twofold.
For the teachers, the analysis functions provide learning and
achievement information of each student and the entire class as

1 Saga University, Saga 840–8502, Japan
a) kake@is.saga-u.ac.jp

well as the analysis data of each blank and question. For the stu-
dents, the analysis functions provide learning and achievement
information about the student as well as the analysis data of each
blank and question. We shall call the second type of the analysis
functions as student feedback functions.

The analysis functions are composed of the analysis functions
of each student, those of a question, and those of an answering
process. A teacher can analyze the achievement of each student
and the entire class by utilizing the analysis functions. The anal-
ysis result will be a useful input to improve programming educa-
tion. We utilize the analysis functions utilizing the data collected
at an actual class. We shall demonstrate the usefulness of the
analysis functions through the analysis. Two teachers teaching
computer programming at Kumamoto National College of Tech-
nology reviewed a preliminary version of the analysis functions
and positively appreciate the current version of the analysis func-
tions.

Some of the analysis functions are also provided to the stu-
dents as student feedback functions. We perform an evaluation
experiment of the student feedback functions at an actual class.
We have obtained positive feedbacks from many of the students
through the experimental evaluations.

This paper is organized as follows. We shall demonstrate the
basic process of programming education utilizing pgtracer in Sec-
tion 2. Basic functions and features of pgtracer are introduced in
Section 3. We also demonstrate the difference with the similar
tools in order to demonstrate originality of the proposed student
log analysis functions. We next present the overview and the de-
tail of the student log analysis functions in Section 4. Some of the
functions are also provided to the students as student feedback
functions. The outline of the evaluation experiment is explained

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

in Section 5. The section also contains preliminary evaluation
from the viewpoint of the two teachers teaching computer pro-
gramming. Result of the experiment and the observation of the
result for the entire class are presented in Section 6 in order to
demonstrate usefulness of the analysis functions. In Section 7,
we shall present the survey experiment to evaluate the student
feedback functions from the viewpoint of the students.

2. Programming Education Utilizing Pgtracer

A fill-in-the-blank question of pgtracer is composed a pair of
a C++ program and a trace table representing execution order of
steps with the routine name, values of each variable and output of
each step (Fig. 1). A student fills the blanks such that the program
and the trace table become consistent. Trace table is important
for program comprehension and can help students when they get
stuck during programming. It is important to visualize execution
process of a program for a novice programmer. Thus we expect
a trace table as an effective means of programming education es-
pecially for beginners.

Pgtracer provides various types of blanks within a program and
a trace table so that we can check both program comprehension
through blanks within the trace table and program composition
through blanks within the program. Therefore we can evaluate
a wide range of students with various levels of achievement by
providing the following types of fill-in-the-blank questions.

Fig. 1 Fill-in-the-Blank question of pgtracer.

Fig. 2 Programming education process utilizing pgtracer.

• A blank at a value of a variable within the trace table can be
used to check student’s recognition of change of the value of
the variable.

• A blank at a step number, a variable name or a routine name
within the trace table can be used to check student’s recogni-
tion of execution order of statements or corresponding vari-
able.

• A blank at a single token within the program, such as vari-
able name, operator, reserved word, etc. can be used to check
student’s ability of elementary programming.

• A blank at a sequence of tokens within the program such as
expression, statement, compound statement, routine can be
used to check student’s ability of more advanced program-
ming.

There is a case where more than one right answer exists for a fill-
in-the-blank question. Pgtracer evaluates all of such answers as
correct, as long as the execution result of the completed program
and the correct trace table are consistent. Further detail can be
found in Section 3.1.

Pgtracer is developed as a plug-in of well-known lecture man-
agement system Moodle. This approach enables to provide a
one-stop service for programming education utilizing other ed-
ucational contents. A student can learn online for 24 hours and
365 days. We utilize a (basically empty) template for Moodle
modules to develop pgtracer so that pgtracer is completely our
original implementation.

Figure 2 represents a process of programming education uti-
lizing pgtracer. A fill-in-the-blank question is composed of a pro-
gram, a trace table, a mask for the program and a mask for the
trace table. They are described using XML. We separate a pro-
gram and a mask for the program so that multiple masks with dif-
ferent difficulty levels can be defined for a program. Trace table
and the corresponding masks are separated for the same reason.
Question DB contains valid combination of the XML files.

When a student answers to a question, the system automati-
cally evaluates the answer and feedbacks the score to the student.
The student then can view a right answer after the evaluation.
At the same time, pgtracer collects the log data of the answering
process and the score whose detail are presented in Section 3.3.

The collected data is utilized to analyze the achievement level
and the learning process of each student and the entire class. Pg-

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

tracer provides various analysis functions and the student feed-
back functions for the collected data proposed in this paper. The
instructor can use the analysis functions to improve the educa-
tional contents including fill-in-the-blank questions and the in-
struction to each student. A student can utilize the student feed-
back functions to understand the achievement of the student.

Pgtracer also provides functions to create and edit XML files
representing a program, a trace table, a mask for program and
a mask for trace table. XML files representing a program and a
trace table are generated by pgtracer. Pgtracer also provides func-
tions to edit the XML files representing masks. The generated
files and configurations are stored in the question DB. Further
detail can be found in Section 3.2.

As the readers can observe from Fig. 2, various functions of pg-
tracer are developed to realize PDCA cycle (Plan, Do, Check and
Action) of programming education. We thus can realize continu-
ous improvement of the teaching activity through question design
(plan), student exercise (do), data analysis (check) and improve-
ment of the questions (action).

3. Basic Functions of Pgtracer

Pgtracer provides various functions to support the program-
ming education process illustrated in Fig. 2. We shall introduce
further detail of the basic functions in this section excluding the
data analysis function and the student feedback function. We
shall also demonstrate difference of pgtracer with the related pro-
gramming education tools.

3.1 Automatic Scoring Functions
When a student fills a blank, pgtracer first compares the stu-

dent’s answer with the right answer as text. If the two answers are
the same, then pgtracer evaluates the student’s answer as correct.
If the student’s answer is an empty string, then pgtracer evaluates
the answer as incorrect.

When the two answers are not the same, pgtracer generates
a C++ program whose blanks are filled by the student’s answer
except that the blanks are filled by the right answer when the stu-
dent answer is an empty string. Pgtracer also generates the filled
trace table using the right answer. Then pgtracer executes the
filled program to automatically generate the corresponding trace
table. Pgtracer evaluates the correctness of the student’s answer
by comparing the generated trace table with the filled trace table.
Therefore pgtracer can correctly evaluate student answers even if
a fill-in-the-blank has multiple right answers.

The readers can refer to the detail of the automatic scoring
function in our papers [1], [3].

3.2 Question Editing Function
A teacher first prepares a C++ program and the input data to

execute the program *1. Then pgtracer automatically converts the
program to the corresponding XML file representing the program

*1 Pgtracer recognizes C++ programs containing basic language features
such as variable, type, statement, expression, flow control, compound
data type, function and standard I/O library. But current version of pg-
tracer does not recognize advanced language features such as class, tem-
plate and exception.

after checking the program syntax through compilation.
Pgtracer provides a function to automatically generate XML

file representing a trace table when the teacher specifies an XML
file corresponding to a program and the input data.

Pgtracer also provides an editing function of XML files repre-
senting program mask and trace table mask. The function shows
the selected program or trace table. A teacher can use the func-
tion to select an arbitrary token or sequence of tokens to define a
mask or a hidden portion of the program or the trace table. There-
fore, XML knowledge is not required to the teachers when they
create and/or edit fill-in-the-blank questions.

The generated XML files are stored in the question DB. The
detail of the question editing function can be found in our pa-
per [2], [3].

3.3 Student Log Collection Function
Pgtracer provides a function to start and stop collection of the

student log. A student log is composed of the study log and the
answer log.

The study log stores records composed of studyId (id of the
record), userId, questionId, score, startTime and endTime. Each
record represents a summary of a student answer to a blank of
a fill-in-the-blank question. The answer log represents the de-
tailed answering process of the study log. A record of the an-
swer log is composed of studyId, XPath expression of the corre-
sponding blank, student’s answer, right answer, elapsed time to
fill the blank, and the score of the answer. Each record is col-
lected when a student fills a blank. Since there is a case that the
student rewrites a blank with different answer, the score value is
calculated only for the final answer of the blank.

The above log collection becomes possible since pgtracer as-
sumes fill-in-the-blank questions. The analysis functions pro-
posed in the next section are designed using the above log records.

3.4 Comparison with Related Tools
Since computer programming is one of the core issues in sci-

ence and engineering education, various tools are proposed to
assist programming education. Pgtracer has various advantages
over these tools.

Nishida et al. proposed a learning environment named PEN
for novice programmer [4]. A student constructs a program from
the scratch and PEN provides various functions for the student
to understand the execution of the program. On the other hand,
pgtracer utilizes fill-in-the-blank questions in order to focus on
portion of the program. Then the learning time, which is the to-
tal time to learn a topic with programming exercise, will become
shorter by using pgtracer. The difficulty level of the questions can
also be adjusted more easily.

There is another programming education tool [5] which utilizes
visual programming for novices. However the tool does not ana-
lyze learning process and achievement of the students.

Funabiki et al. also proposes a programming education system
utilizing fill-in-the-blank question [6] so that there some similar-
ity between the system and pgtracer. But the tool can only define
blanks at each reserved word of a Java program so that the flexi-
bility of pgtracer is significantly higher. The system also does not

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

collect student log and thus cannot provide the log data analysis
functions.

Deperlioglu et al. propose a blended learning model for com-
puter programming [7]. There is a tool utilizing learning analyt-
ics [8]. However, the detail of the collected data is not presented.

In addition to the above features, the log analysis function in
this paper is based on the log explained in Section 3.3. Although
there are many log data analysis tools to support computer pro-
gramming, pgtracer is the only system whose log contains infor-
mation of each student answer at each blank. Thus the data anal-
ysis functions proposed in this paper can be considered original
to the best of the author’s knowledge.

4. Student Log Analysis Functions

We shall propose the student log analysis functions in this sec-
tion. The functions are designed to analyze the student log intro-
duced in Section 3.3 from various viewpoints and different levels
of detail. Many of the analysis functions are provided also for
the student after eliminating the score of other students so that
privacy of other students can be protected.

4.1 Overview of the Analysis Functions
We design the student log analysis functions from three major

viewpoints: analysis functions of each student, analysis functions
of each question, and process analysis functions. Each viewpoint
contains two or three analysis functions. Each function has a
separate window. Transition diagram among the windows cor-
responding to the analysis functions is illustrated in Fig. 3.

The seven analysis functions are represented in rectangles in
Fig. 3. The functions filled by the gray color summarize the anal-
ysis result from the corresponding viewpoint. The remaining
functions provide detailed analysis result. Detail of each function
will be explained in the succeeding subsections. Pgtracer allows
transition between the windows connected by a directed edge.

4.2 Analysis Functions of Each Student
The analysis functions of each student provide analysis results

of all questions for each student. A teacher can analyze the learn-
ing activities of each student by utilizing these functions.
4.2.1 Utilization Summary

The utilization summary function provides summary of each
student in terms of number of attempted questions, total number
of attempts, total study time and percentage of the correct answers

Fig. 3 Transition diagram among windows of the student log analysis func-
tions.

(Fig. 4). The “show detail” link is used to view the learning his-
tory function of the student. Distributions of the right answer ratio
and the study time are also presented. The relationship between
total number of attempts and the total study time represents each
student using a point.

This function allows a teacher to overview the learning activity
and eagerness of each student. It is possible to sort the rows using
an arbitrary field. It is also possible to sort the rows using more
than one field *2. For example, the utilization summary sorted by
the number of challenged questions can be used to find students
who do not solve the instructed questions. The teacher can under-
stand student workload by observing the distribution of the study
time. Then the teacher can adjust difficulty level of the questions
in order to control the workload.
4.2.2 Learning History

The learning history function provides the list of questions with
the achievement summary of a selected student (Fig. 5). The
achievement summary is composed of the score, start time and
duration for the first trial and the trial with maximum score.

A teacher can check whether the student solved the assigned
questions by using the function. It is also possible to retrieve
questions which the student is not good at. This can be done by
sorting the rows using the score or the duration. The achievement
for the first trial represents the actual ability of the student. Thus
the above sorting should be performed for the first trial.

On the other hand, the achievement of the trial with the max-
imum score is used to evaluate the effort of the student. This is
because an eager student tends to solve the same question until
desired score is obtained. A teacher can check the improvement
of the student by observing the difference of achievements of the
two trials.

The teacher can analyze more detail by using the process anal-
ysis functions.

4.3 Analysis Functions of Each Question
The analysis functions of each question provide analysis re-

sults of all students for each question. A teacher can analyze the
difficulty level of each question by utilizing these functions.
4.3.1 Achievement Summary

The achievement summary function provides average score,
duration, number of students and the average number of trials of
the students for each question (Fig. 6). The average score and du-
ration are calculated for the first trial and the trial with maximum
score of the students. The “show detail” link is used to access the
analysis function of individual student.

A teacher can utilize this function to find difficult questions for
the students by sorting the questions in the order of average score
and duration for the first trial. It is also possible to observe the ef-
fect of repetition by comparing the average scores of the first trial
and the trial with the maximum score. Such checking of the av-
erage score and duration is useful to validate the difficulty levels
of the questions.
4.3.2 Analysis of Individual Student

The analysis of individual student provides distributions of the

*2 The sorting function of pgtracer is implemented using Tablesorter plu-
gin [9].

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 4 Utilization summary.

Fig. 5 Learning history.

score and required time as well as the relationship between score
and required time (Fig. 7). It also provides achievement summary
of each student for the selected question. The achievement sum-
mary is composed of the score, start time and required time for
the first trial and the trial with the maximum score.

A teacher can easily find students who do not answer the ques-
tion by sorting the students in the order of score and duration.
Such sorting is useful to understand the achievement level of each
student for the question. Then the teacher can further analyze the
detail of the learning process of each student by using the process
analysis functions.

This function provides a link “problem analysis” to the detailed
analysis function of each blank which will be explained next.

4.3.3 Detailed Analysis of Each Blank
The analysis function of each question provides summary of

the student answers for the selected blank of the specified ques-
tion (Fig. 8). A fill-in-the-blank question is shown at the top of
the window. Each blank is automatically assigned a unique num-
ber. When a teacher selects a “show detail” link at the blank list,
the answers of the students are listed at the bottom of the window.
The summary of the answers is also shown in the middle of the
window.

Summary of the student answers contains the number of stu-
dents and the average duration of each answer for the first trial
and the trial with the maximum score. A teacher can observe the
summary to find typical mistakes of the students.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 6 Achievement summary.

Fig. 7 Analysis function of individual student.

The detailed analysis function of each blank provides the list
of student answers of the selected blank (Fig. 9). The list contains
answer, evaluation result (correct or incorrect), required time and
the total number of trials of the answer of each student for two
types of trials. Since the list can be sorted by arbitrary fields, the
teacher can find the students who made the same mistake.

Pgtracer also calculates the average score and the duration of

the selected blank for the first trial and the trial with maximum
score. The average values are useful to understand the difficulty
level of the selected blank. There is a case when a student leaves
his seat while answering the blank. We also find a case which a
student gives up answering the blank without thinking. Pgtracer
provides a function to compute the average values for the answers
between the specified duration in order to exclude these cases.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 8 Analysis function of a question.

Fig. 9 Detailed analysis function of each blank.

4.4 Process Analysis Functions
The process analysis functions provide detailed analysis results

of a pair of each student and each question.
4.4.1 Analysis of Learning History

The analysis function of learning history provides the score,

start time and duration for each trial of the selected student and
question (Fig. 10). A teacher can analyze the effect of multiple
trials of the student for the question. The attempt number is also
used as the link to the detailed analysis function of the learning
process of the trial.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 10 Analysis function of learning history.

Fig. 11 Detailed analysis function of learning process.

4.4.2 Detailed Analysis of Learning Process
The detailed analysis function of learning process provides the

state of the blanks of the selected question at an arbitrary point of
the answering process of the selected student (Fig. 11).

The table shown at the top of the window contains the sequence
of blank-filling activities of the student. Each activity represents
the corresponding student answer, correct answer provided by the
teacher and the duration to fill the blank. The teacher can analyze
the answering process of the student. The duration can be utilized
to evaluate the difficulty level of the blanks from the viewpoint of
the student.

When the teacher selects an activity within the table, pgtracer
illustrates the state of the blanks when the student performs the
selected activity. The yellow blank represents the updated one
so that the teacher can easily find the difference of the state of

the blanks. The next and previous buttons are provided so that
the teacher can easily select the next and previous activities to go
forward and backward through the student’s learning process.

The teacher can review the answering process of each student
by using the detailed analysis function. For example, it can be
observed that a student repeatedly fills the same blank. The an-
swering processes are different between the students with high
score and low score. Such information will be useful to improve
programming education and to guide students effectively.

5. Experimental Evaluation from Teacher’s
Viewpoint

5.1 Evaluation Plan
We collect student log of 68 students through a programming

exercise at an actual class in order to demonstrate effectiveness

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

of the student log analysis functions from the viewpoint of the
teachers. The students are taking “Data Structure and Algorithm”
course and are learning C++ programming for 10 months at the
department of information science, Saga University. The exercise
is composed of four questions represented in Table 1. The table
also contains statistics of each question, average number of trials
of each student and the number of students taking the question.

Students are initially explained how to use pgtracer at a class
and are given two weeks to complete the exercise. A student can
try the same question multiple times. The evaluation score of
each student is calculated based on the average score at the first
trial of each question and the trial with the maximum score. The
students have learned the algorithms used in the four questions at
the lecture. The algorithms are described within the programs as
high-level comments. Every blank is defined within a program
and no blanks are defined within trace table. The program is de-
scribed according to the guidelines presented in Ref. [12].

5.2 Review Comments and Improvement
We have obtained several review comments from the users of

the preliminary version of the analysis functions. The reviewers
are two teachers teaching computer programming at Kumamoto
National College of Technology. One of the reviewers is a se-
nior professor whose major is not IT, while the other reviewer is
an associate professor with IT degree. The following is a list of
comments they provided.
• It is better to show duration of the learning time instead of

the end time.
• Sorting of the students should be based on student number

by default.
• Difficult to compare fill-in-the-blank question and analysis

result in the detailed analysis function of each blank.
• Need next and previous buttons to the detailed analysis func-

tion of learning process in order to check the answering pro-
cess step by step.

• Difficult to find the updated blanks in the detailed analysis
function of learning process.

• Need download function of the analysis result.
• Better to provide bar chart representing score distribution

Table 1 Statistics of the questions.

Table 2 Analysis of trials of the questions.

etc.
We improve the initial version considering the comments. The

revised functions are listed below. The two teachers strongly sup-
port the revised functions.
• Show duration of the learning time instead of the end time.
• Show the students in the order of student number by default.
• Improve the detailed analysis function of each blank by

adding vertical scroll bars to the program and trace table so
that a user can easily compare a fill-in-the-blank question
and the analysis result of the question.

• Add next and previous buttons to the detailed analysis func-
tion of learning process.

• Show the updated blank with yellow color in the detailed
analysis function of a learning process.

• Implement the download function of the analysis result to an
Excel file using PHPExcel [10])

• Provide a bar chart using JpGraph [11] representing score
distribution etc.

6. Demonstration of the Analysis Function
through Analysis of the Collected Data

We shall analyze the collected log using the analysis function
in this section. We could not collect logs for the initial two hours
of the exercise due to defect and correction in the log collection
function. As a result, we have lost most of the answer log data
for Hashing. The analysis is carried out only using the collected
data. However, the analysis can be considered enough in order to
demonstrate usefulness of the proposed analysis functions.

The analysis functions calculate all data values presented in
Tables 1, 2, 3, 4, 5, 6 and Figs. 12, 13. These tables and figures
are prepared by the author for the conciseness and readability of
the paper.

6.1 Analysis of Each Questions
62 among 68 students complete the four questions of the exer-

cise. However, some of the answers took more than 5,000 sec-
onds since the student left his seat during exercise. There are
other answers whose score is less than 20% and whose duration
is less than the required time of the teacher. This can be consid-
ered that the student quitted the exercise to see the right answer.
Such answers are regarded as invalid and are excluded from the
statistics. Table 1 shows statistics of the questions including the
number of students providing valid answers. We shall analyze
each question for these valid answers in this section.

Table 2 shows the average score, average duration and the num-
ber of students providing valid answers. These values are shown

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Table 4 Typical mistakes of the students classified by causes.

Table 3 Statistics of the blank types.

for various types of trials. The first trial represents the actual pro-
gramming skill of the students. The readers can observe that the
average score becomes higher for the second and third trials and
that the average duration tends to become shorter. This can be
considered as the improvement due to multiple trials. Another
reason is that the students see the right answer at the end of each
trial.

It should be noted that the average duration of Hashing for the
first trial (2,337 seconds) is quite long compared with other ques-
tions and trials. This is because most of the students started the
exercise from the Hashing question so that the students required
time to become familiar with pgtracer.

Figures 12 and 13 represent the distribution of score and du-
ration of the questions excluding Hashing for the above reason.
The distribution is calculated based on the first trial of the ques-
tion. It can be observed that Binary Searching is easier than the
other two questions. The readers can also see Table 1 to find that
Binary Searching program is significantly simpler. It can also be
observed from Table 1 that Heap Sort is shorter than Parenthe-
sis Checking. The reason of the similar distribution of the two
questions will be discussed in Section 6.2.

Table 5 Student score summary.

Table 6 Comparison of right answer ratio.

6.2 Analysis of Each Blank
6.2.1 Analysis Based-on Blank Type

Pgtracer allows defining various types of blanks within a pro-
gram and a trace table. We shall analyze the difficulty level of
each blank type in this section. 9 types of blanks are defined
within the programs of the evaluation experiment. Some of the
blanks are defined as a combination of multiple blank types. They
are summarized in Table 3. The blank types are sorted according
to the descending order of the ratio of right answers. A blank be-
comes more difficult if the right answer ratio becomes lower and
the average duration becomes longer.

It can be observed that the blanks of a return statement are
easy among the blank types having more than 2 blanks. This is
because that the blanks ask the return value and the return values
are described in the comment of the routines.

We can observe that the blanks having multiple blank types
tend to become more difficult. For example, a blank whose cor-
rect answer is “stack[top++] = x;” is a combination of variable
assignment and increment. Some students answer “stack[top] =
x;” and forget to increment the variable “top”.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 12 Score distribution of three questions.

Fig. 13 Distribution of duration of three questions.

Many of the blanks of this type are contained in Heap Sort
question. Heap Sort question also contains blanks of variable as-
signment and while statement whose right answer rates are low.
These are the main reasons that the difficulty level of Heap Sort
is similar to that of Parenthesis Checking.
6.2.2 Analysis of Student’s Mistake

We list major mistakes of the students for the blank types hav-
ing low right answer ratio in Table 4. We find that students made
multiple mistakes within a blank. For such cases, we count each
mistake independently. Major mistakes can be identified by ob-
serving the number of mistakes for each cause of the mistake.

We can observe that some students do not care about the return
value of a function. More mistakes were found within assign-
ment statements. Typical example is the assignment to an index
of a heap. This is one of the reasons to increase difficulty level of
the Heap Sort question. Pgtracer provides trace table so that a stu-
dent can check the validity of his answer. But some students do
not check consistency of their answer with the trace table. Possi-
ble reason for this is that the trace table becomes complex and that
it is not easy for the student to understand which portion of the
trace table is modified. Thus we have a plan to improve the ap-
pearance of the trace table such that the modified cells are clearly
indicated by changing background color of the cell.

Another type of typical mistake is caused by misspelling and
missing semicolon. Microsoft Visual Studio is used for C++ pro-
gramming education in our department. Although such IDE is
powerful, grammatical errors are automatically corrected so that
students do not aware of slight mistakes.

6.3 Analysis of Student’s Learning Process
We analyzed the answering processes of the students for two

types of questions composed of multiple functions: Heap Sort
and Parenthesis Checking. Most of the students fill the blanks in
the order appeared in the program.

However we find that 5 students fill the blanks according to the
execution order of statements containing the blanks for Parenthe-
sis Checking. These students obtain high scores of 92%, 80%,
76% (two students) and 73% respectively. In case of Heap Sort,
three students fill the blanks according to the execution order.
These students also obtain 90%, 86% and 68%. We can conclude
that a student who understands the execution order of a program
can perform well at the experiment.

We also find students who start filling the blanks from the
middle of the programs. These students typically cannot fill the
blanks at the beginning of the program. The number of such stu-
dents is 13 for Parenthesis Checking and 1 for Heap Sort. We
observe that these students obtain low scores. The number of
such students depends on the difficulty level of the question.

6.4 Achievement Analysis of Each Student
Achievement of each student can be analyzed by comparing

the right answer rate of each blank type between the student and
the entire class. We shall demonstrate an example to analyze the
achievement of two students utilizing the analysis functions pro-
posed in this paper. The achievement of the entire class is ana-
lyzed in Sections 6.1 to 6.3.

Table 5 represents scores of the two students.
Table 6 represents the ratio of right answer computed for each

blank type. We omit the blank types in Table 3 such that the num-
ber of blanks is equal to 1. This is because that the blank types
have small number of log records so that they are not suitable for
statistical analysis.

The ratios which we focus on are represented using underline
in Table 6.

Although student A generally marks high scores in all of the
questions, he made three mistakes at the blanks containing a com-
bination of if/else statement and subroutine call. Two of the three
mistakes were caused by misspelling. He also made six mistakes
caused by misspelling and missing semicolon among 13 mistakes
he made. The student understands programming well but some-
times makes careless mistakes.

The right answer ratio of Student B is lower than the ratio of
the entire class particularly for if/else statement and a combina-
tion of subroutine call and variable assignment. The mistakes
are caused by the lack of understanding of comparison expres-
sion and by forgetting to save return values of a subroutine. He
also left many unfilled blanks. This implies fundamental lack of
understanding of the C++ language basics and the algorithm for
parenthesis checking.

7. Evaluation of the Student Feedback Func-
tion

The analysis functions are also provided to the students after
removing personal information of other students. We collectively
call these functions as student feedback function. We utilize pg-

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 14 Answer summary of each question.

tracer at a computer programming lecture at Kumamoto National
College of Technology [13]. We performed the student survey for
the 50 students taking the lecture. 45 students (90%) responded
to the survey.

The survey contains four questions Q1 to Q4 defined below.
Q1: How useful is the score distribution function of each ques-

tion?
Q2: How useful is the analysis function of blanks of a question?
Q3: How useful is the detailed analysis function of a blank of a

question?
Q4: How do you feel is the overall usability of the student feed-

back function?
Each of the questions Q1 to Q3 corresponds to an analysis func-
tion illustrated in Fig. 7 to Fig. 9. We intend that usefulness of the
student feedback function was evaluated through Q4.

Figure 14 represents the distribution of answers for the ques-
tions. From the viewpoint of avoiding bias, a strong negative op-
tion could be provided. But we did not provide such option since
the students will choose the weak negative option “Not so useful”
instead of the strong negative option under the Japanese culture.

The readers can observe from Fig. 14 that more than 80% of
the students answer positively to all of the four questions. This
indicates that the student feedback functions are well accepted
among the students.

Particularly the positive answer ratio is around 90% for Q1
and Q3. The positive answer ratio for Q1 implies that most of
the students are interested in the score distribution and their own
achievement level analysis. We can also conclude from the an-
swer to Q3 that most students are willing to understand their weak
point by utilizing the detailed analysis function of each blank.

Compared with the above two functions, usefulness of the anal-
ysis function of blanks of a question is low from the answer to Q2.
The reason of this can be observed that the amount of information
provided by the analysis function is less than the two functions.

8. Conclusion

We proposed seven analysis functions to analyze student log
collected by the programming education support tool pgtracer.
The functions are provided both for teachers and students. We
performed evaluation experiment of the proposed functions in or-
der to demonstrate usefulness of the functions for both types of
the users. The analysis result is useful for a teacher to understand
the achievement level of the entire class and the individual student
as demonstrated in Sections 5 and 6.

We also extend the analysis function to develop the student
feedback function. The feedback function provides a student
with the analysis result of himself and the entire class. Then the
student can assess his own achievement by comparing with the
achievement of the class. We received a positive feedback from
most of the students as explained in Section 7.

From the viewpoint of systematic education of software de-
velopment, education of requirement engineering and software
design is also important especially for students willing to be IT
professionals. We are also developing a series of education sup-
port tools for these phases. These tools and the evaluation result
will be reported in our future publications.

Acknowledgments The authors are grateful to the stu-
dents at Saga University and Kumamoto National Institute of
Technology for their cooperation to the evaluation experiment.
This research is supported by JSPS KAKENHI Grant Numbers
16K01022 and 17K01036.

References

[1] Kakeshita, T., Yanagita, R. and Ohta, K.: A programming education
support tool pgtracer utilizing fill-in-the-blank questions: Overview
and student functions, Proc. 2nd Int. Conf. Education Reform and
Modern Management (ERMM 2015), Hong Kong, pp.164–167 (2015).

[2] Kakeshita, T., Ohta, K., Yanagita, R. and Ohtsuki, M.: A program-
ming education support tool pgtracer utilizing fill-in-the-blank ques-
tions: Teacher functions, Proc. 2nd Int. Conf. Education Reform and
Modern Management (ERMM 2015), Hong Kong, pp.168–171 (2015).

[3] Kakeshita, T., Yanagita, R. and Ohta, K.: Development and evaluation
of programming education support tool pgtracer utilizing fill-in-the-
blank question, Journal of Information Processing: Computer and Ed-
ucation, Vol.2, No.2, pp.20–36 (2016). (in Japanese)

[4] Nishida, T. et al.: Implementation and evaluation of PEN: The pro-
gramming environment for novices, Journal of Information Process-
ing, Vol.48, No.8, pp.2736–2747 (2007). (in Japanese)

[5] Hahul, R., Whitchurch, A. and Rao, M.: An open source graphical
robot programming environment in introductory programming cur-
riculum for undergraduates, Proc. IEEE Int. Conf. MOOC, Innovation
and Technology in Education (MITE), pp.96–100 (2014).

[6] Funabiki, N., Korenaga, T., Nakanishi, T. and Watanabe, K.: An
extension of fill-in-the-blank problem function in Java programming
learning assistant system, 2013 IEEE Region 10 Humanitarian Tech-
nology Conference, R10-HTC 2013, pp.85–90 (Aug. 2013).

[7] Deperlioglu, O. and Kose, U.: The effectiveness and experiences
of blended learning approaches to computer programming educa-
tion, Computer Applications in Engineering Education, Vol.21, No.2,
pp.328–342 (June 2013).

[8] Malliarakis, C., Satratzemi, M. and Xinogalos, S.: Integrating learn-
ing analytics in an educational MMORPG for computer programming,
Proc. IEEE 14th Int. Conf. Advanced Learning Technologies, pp.233–
237 (2014).

[9] jQuery plugin: Tablesorter 2.0, available from 〈http://tablesorter.com/
docs/〉 (accessed 2018-05-05).

[10] PHPExcel, available from 〈https://github.com/PHPOffice/PHPExcel〉
(accessed 2018-05-05).

[11] Asial Corporation: JpGraph, available from 〈http://jpgraph.net/〉 (ac-
cessed 2018-05-05).

[12] McConnell, S.: Code Complete: A Practical Handbook of Software
Construction, 2nd Edition, Microsoft Press (2004).

[13] Murata, M. and Kakeshita, T.: Analysis method of student achieve-
ment level utilizing web-based programming education support tool
pgtracer, 5th International Conference on Learning Technologies and
Learning Environment (LTLE 2016), Kumamoto, Japan, pp.316–321
(July 2016).

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Tetsuro Kakeshita is an associate pro-
fessor at Department of Information Sci-
ence, Saga University, Japan. He received
his Ph.D. degree in Computer Science
from Kyushu University, Japan in 1989.
His major research interests include quan-
titative analysis of ICT education and ICT
certification, and complexity analysis of

database and software systems. He received an excellent edu-
cator award from Information Processing Society of Japan (IPSJ)
in 2013. He is a senior member of IPSJ.

Kosuke Ohta received his M.S. degree
in computer science from Saga Univer-
sity, Japan in 2016. He joined the pg-
tracer project and developed the analysis
functions at Saga University. He also re-
ceived an excellent student presentation
award from IPSJ Computer and Education
Workshop in March 2015. Currently he is

working as an IT engineer for an IT company in Saga, Japan.

c© 2019 Information Processing Society of Japan


