
Utilizing Programming Education Support Tool
pgtracer in an Actual Programming Course

Tetsuro Kakeshita
Graduate School of Information Science

Saga University
Saga, Japan

kake@is.saga-u.ac.jp

Miyuki Murata
Faculty of Liberal Studies

National Institute of Technology, Kumamoto College
Yatsushiro, Japan

m-murata@kumamoto-nct.ac.jp

Abstract— We developed a programming education support
tool pgtracer. Pgtracer provides fill-in-the-blank questions to the
students and collects student log to analyze student’s learning
process and understanding level. In this paper, we report our
experience to utilize pgtracer at an actual programming course
as homework assignment. We develop fill-in-the-blank questions
corresponding to the course syllabus at each week. Student
activities on pgtracer are analyzed to develop questions for the
succeeding weeks. We also provide data to the instructor about
the activities and achievement of the students for better
collaboration between lecture and homework. We received
positive feedbacks from both of the teacher interview and student
survey about the usefulness of pgtracer as programming
education support tool.

Keywords—Learning Analytics (LA); computer programing
education; e-learning; Moodle; fill-in-the-blank question

I. INTRODUCTION
Computer programming is essential at national institute of

technology and university majored in science and engineering.
Recently, Japanese government announced that computer
programming education begins at elementary school from 2020
in order to develop society members for the 21st century by
fully utilizing computer.

However we often find students with low programming
skill at an actual class. Many of them do not understand basic
programming concepts such as loop, function and pointer.
Individual support for such students is quite important.

We developed a programming education support tool
pgtracer [1,2] to support teachers and students for the above
purpose. Pgtracer utilizes fill-in-the-blank questions composed
of program and trace table. The students fills the blanks. Then
pgtracer automatically executes the filled program and
compares the answer with the right answer. Pgtracer is
developed as a Moodle plug-in so that the student can learn
computer programming at any time and place as long as the
internet connection and personal computer is provided.

Pgtracer utilizes fill-in-the-blank question as illustrated in
Fig. 1. This means that students need not develop a computer
program from the scratch. Pgtracer collects student log of
filling the blanks so that teacher can analyze the collected log
to check the activity and achievement of the individual student

as well as those of the entire class. This is a typical application
of the learning analytics.

In this paper, we report our experience to utilize pgtracer at an
actual programming course at Kumamoto national institute of
technology. Fill-in-the-blank questions are utilized as
homework assignment. Homework is required at each course
for the students to achieve certain educational outcomes
defined in the course syllabus.

Fill-in-the-blank questions are developed based on the
course syllabus at each week. We monitor the student activity
using pgtracer and provide feedbacks to the instructor.
Feedback is also provided to improve the questions for the
succeeding weeks.

Student activity is analyzed using the number of students to
solve each question. Student achievement is analyzed using
distributions of score and required time of each question and
blank. We also interviewed the teacher and conducted a survey
questionnaire to collect comments and opinions from the
student. We selected some students and performed an
interview for the students.

This research is supported by JSPS KAKENHI under grant number
16K01022 and 17K01036.

Fig. 1 A Fill-in-the-Blank Question of pgtracer.

This paper is organized as follows. The next section introduces
the programming education model and workflow using
pgtracer. We next explain the course planning in Section 3.
Preparation policy of the fill-in-the-blank questions is
explained in Section 4. In Section 5, we explain the analysis
result of the student log. We report the analysis result to the
instructor to improve the course and questions as explained in
Section 6. We conducted a survey questionnaire and student
interview as well as interview to the instructor. The results are
provided and discussed in Section 7.

II. PROGRAMMING EDUCATION MODEL USING PGTRACER
A fill-in-the-blank question of pgtracer is composed a pair

of a C++ program and a trace table representing execution
order of steps with the routine name, values of each variable
and output of each step. A student fills the blanks such that the
program and the trace table become consistent. Trace table is
important for program comprehension and can help students
when they get stuck during programming. It is important to
visualize execution process of a program for a novice
programmer. Thus we expect that a trace table is an effective
means for programming education especially for beginners.

Fig. 2 represents the programming education process
utilizing pgtracer. A fill-in-the-blank question is composed of
a program, a trace table, a mask for the program and a mask for
the trace table. They are described using XML. We separate a
program and a mask for the program so that multiple masks
with different difficulty levels can be defined for a single
program. Trace table and the corresponding masks are
separated for the same reason. Question DB contains valid
combinations of the XML files.

When a student answers to a question, the system
automatically evaluates the answer and feedbacks the score to
the student. The student then can view the right answer. At
the same time, pgtracer collects the log data of the answering
process and the score.

The collected data is utilized to analyze the achievement
level and the learning process of each student and the entire

class. Pgtracer provides various analysis functions for the
collected data. The instructor uses the analysis functions to
improve the educational contents including fill-in-the-blank
questions and the instruction to each student.

Pgtracer also provides functions to create and edit XML
files representing a program, a trace table, a mask for program
and a mask for trace table. Pgtracer automatically converted a
program to the corresponding XML file. Then a teacher
provides input data file to execute the program. Then pgtracer
generates the XML file representing the corresponding trace
table using the input data file. Next the teacher can create and
edit program mask and trace table mask using pgtracer. The
teacher can specify masks and hidden portion of the program
and the trace table. Pgtracer then generates XML files
representing the masks for program and trace table.

TABLE 1
LECTURE PLAN

First Semester Second Semester
Week Contents Week Contents

1 Fundamentals of
Computer 1 One

Dimensional
Array 2 Representation of

Numeric Values 2
3 Flowchart 3 Two-

Dimensional
Array 4 Constant, Variable,

Assignment 4
5 I/O (printf, scanf) 5

Pointer
6 Type and Operator 6
7 Conditional Branch 7 Function
8 Mid-Term Examination 8 Mid-Term

Examination
9 Conditional Branch 9

Function
10 for Statement 10
11 while Statement 11 Variable Scope
12 do while statement 12 File
13 break, continue, switch 13

Struct
14 Exercise 14
15 Examination 15 Examination

Fig. 2 Programing Education Process utilizing pgtracer.

Thus a teacher can create and edit XML files without the
knowledge of XML.

The teacher can define various options of the created
questions. The option includes question mode (self-learning
mode or examination mode), show/hide of the correct answer
after automatic scoring, show/hide of the analysis function to
the students, coloring of the corresponding step when a student
selects a blank within a trace table.

III. COURSE PLANNING
The experiment was performed for the 218 students at the

second academic year of Kumamoto national institute of
technology from October 2016 to February 2017. The students
are majored in one of the following areas: mechanical
engineering, electronics, civil engineering, architecture, bio
technology and chemistry. They are learning computer
programming using C language at the common course named
“Fundamental of Computer Science”. The course is composed
of 30 weeks of 90 minutes classes each week. The course is
provided by two teachers, one is giving lecture and exercise
and the other, one of the author, is supporting the course by
utilizing pgtracer for the department of biological and chemical
systems engineering.

Table 1 represents course outline of “Fundamental of
Computer Science”. The experiment was performed during the
second semester. We introduced pgtracer to the students at the
end of June 2016 and registered the students to Moodle at the
beginning of July 2016. We provided 9 questions including
tutorial question and announced the student to utilize pgtracer.

IV. PREPARING FILL-IN-THE-BLANK QUESTIONS USING
PGTRACER

We prepared the fill-in-the-blank questions for the
experiment according to the following policy.

 Provide three questions for each of the 10 weeks in
the second semester.

 Each question is usually based on the teaching
contents of the corresponding week. We utilize the
same or similar program taught at the corresponding
week for the question. However we sometimes
include questions of the previous weeks.

 The question is presented in the self-learning mode.
Students can know whether their answers are correct
or not just after their filling of each blank, since
pgtracer instantly evaluates each blank just after a
blank is filled in the self-learning mode.

 Although pgtracer supports program mask for an
entire statement, we restrict program mask for a token
or a part of an expression. This is because that the
students are programming beginners.

 Trace table mask are defined for a set of consecutive
cells of the same column. This is because that the
value of a variable at the previous or next step
provides hints to the students.

 There are the cases that the same topic is taught for
two weeks. Then more complex questions are
assigned for the latter week which partially contain
algorithm components.

We found during the experiment that the students tend to
quit the exercise when the width of the trace table is too wide
to be displayed on the computer screen. Considering this, we
improve the questions such that the program and trace table
can be displayed within the screen by adjusting the number of
array element, dividing a long comment into two or more lines
and by replacing long names of a variable or a function with
shorter ones.

The questions are developed by the two authors. One
creates the questions as a supporting teacher of the target
course and recognizes the actual teaching contents and
progress of the course. The other author reviews the created
questions based on the validity of the place of the blanks,
difficulty level and consistency between comments and source
code.

We developed 30 questions for 10 weeks. The same option
is used for the questions of the same week. The common
options throughout the all questions are self-learning mode,
show the analysis function and use coloring of the step
corresponding to the current blank in the trace table. We
basically show the correct answer after the students fill a blank.
But we hide the correct answer to the students for the questions
on weeks 4 and 9.

The total number of blanks within a question is between 6
and 14. The average number of blanks is 10. The average time
to create three questions for a particular week is about 2 hours.
We spent 1 hour to write the target programs and 1 hour to
register and edit the program and trace table masks using
pgtracer.

TABLE 2
AVERAGE SCORES AND REQUIRED TIME OF THE QUESTIONS

Question # of
student

Average
of

Trials
Question # of

student
Average

of
Trials

(1)-1* 78 1.5 (6)-1 21 1.38
(1)-2* 73 1.63 (6)-2 19 1.21
(1)-3* 69 1.86 (6)-3 18 1.56
(2)-1 64 1.72 (7)-1 3 1.67
(2)-2 58 1.83 (7)-2 3 1.67
(2)-3 56 1.93 (7)-3 2 1.5
(3)-1 47 1.38 (8)-1 2 2
(3)-2 43 1.77 (8)-2 2 1.5
(3)-3 42 1.55 (8)-3 1 1
(4)-1 40 1.85 (9)-1 1 2
(4)-2 38 1.34 (9)-2 1 1
(4)-3 33 1.27 (9)-3 1 1
(5)-1 36 1.28 (10)-1 1 1
(5)-2 36 1.19 (10)-2 1 2

(5)-3* 36 1.17 (10)-3 1 1
* contains data of the test user.

V. ANALYSIS OF STUDENT ACHIEVEMENT
Table 2 represents the number of student answers and the

average number of trials of each student. The question number
(n) represents the corresponding week of the second semester.
The largest number of students answer questions (1)-1 to (1)-3
prepared for week 1. However the number is gradually
decreasing for the succeeding weeks. This represents the
decrease of the student motivation.

The number of student answers suddenly drop between
weeks 7 and 10. This is because that the contents of weeks 7 to
10 are not included in the mid-term examination. It can be
clearly observed that the inclusion of the learning contents to
the examination is quite important to keep the student’s
motivation at a high level.

Fig. 3 represents the score distribution of question (2)-3.
The highest peak is between 90 and 100%. The second peak is
between 0 and 10. This tendency is common among most of
the questions. This implies that the question is not difficult.

Fig. 4 represents the relationship between score and

required time of the same question as Fig. 3. The required time
of the answers with low score tend to be short. This implies
that the students only view the question during preparation of
the examination and did not actually solve the question.

Fig. 5 illustrates the relationship between average score and
average number of trials of the questions. The blue points
represent the questions where the right answer is shown after
the evaluation, while the orange points represent the questions
where the right answer is not shown. The correlation
coefficient between average score and average number of trials
is -057. The number of students with 100% score increase for
the questions with higher average score. Students quit the trial

when they get the 100% score so that the average number of
trial tends to be higher for the questions with low average score.

Although we expected that the number of trials is different
between the two cases to show or hide the right answer, there is
no significant difference. This implies that the students try to
repeat the trials until they got the 100% score. However we
observed a significant difference between the scores of the first
trial and the maximum score. In the case to show the right
answer, the difference is 20.2, while the difference is 6.7 for
the case to hide the right answer.

Table 3 represents the difference between the examination
scores of weeks 8 and 15 classified by the number of solved
questions of the exercise. We can observe that the examination
score of the week 15 is improved for the students who solved
more questions during the experiment. This is an evidence that
pgtracer is useful to improve programming skill of the students.

VI. FEEDBACK TO THE INSTRUCTOR
We provide 3 fill-in-the-blank questions each week during

the experiment and monitor the students’ behavior. At first we
provide the questions as a self-learning contents, which means
that the pgtracer score does not affect the evaluation of the
subject. Then the number of students was 37 and the total
number of trials was 154.

We then notifies the above situation to the instructor and
the instructor announced to the students that the pgtracer
questions from (1)-1 to (6)-3 are utilized in the mid-term
examination. Then the number of students and the total
number of trials increase to 78 and 803 respectively.

We are expecting to utilize these experience in order to
effectively control the student’s behavior in the future classes.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Av
er

ag
e

 #
 o

f T
ria

ls

Average Scores

Display Right Answer

Non-Display Right Answer

Fig. 5 Distribution of Average Scores and Average # of Trials

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

Re
qu

ire
d

Ti
m

e
(s

ec
)

Score
Fig. 4 Relationship between Score and Required Time of Question (2)-3

TABLE 3
RELATIONSHIP BETWEEN # OF SOLVED QUESTIONS AND

EXAMINATION SCORE

of Solved Questions Average Difference of Exam Score
18 +2.47

1 ～ 9 +0.89
0 －0.18

0
5

10
15
20
25
30

of

 st
ud

en
ts

score
Fig. 3 Score Distribution of Question (2)-3

VII. OVERALL EVALUATION

A. Analysis of Questionaire to the Students
We conducted a questionnaire to the students after the

experiment. Table 4 represents the questions to the students.
The number of answers was 118 (92.2% of the enrolled
students).

Consider questions (1) and (2). The students take 2 to 3
subjects other than the current subject (Fundamental of
Computer Science) which assign homework to the students.
Table 5 shows such subjects for each department of the
students. The bubble chart illustrated in Fig. 6 represents the
relationship between the spent time for the current subject and
other subjects per week. The numbers within the bubbles
represents the number of students corresponding to the answer
represented by the x-y coordinate of the chart.

We can observe that 53 students (44.9%) spend less than 30
minutes per week for the programming exercise of the current
subject. However there are 4 students (3.39%) who require
more than 3 hours. Required time to solve the homework
greatly differ depending on the students.

For question (3), 32.2% of the students solve more than 9
questions. Fig. 7 illustrates the reason of not solving more than
9 questions collected from the remaining 67.8% of the students.

The most popular reason is that the students did not have
enough time. Typical students are taking other subjects listed
in Table 5 as well as other school activity such as club activity
and student council activity. Also considering the reason that
pgtracer score do not affect evaluation, we need to provide
some kind of incentives to motivate students to work on
pgtracer exercise.

Considering the reason from 15 students that the student
did not understand how to use pgtracer, more explanation and
instruction are required at the initial stage to introduce pgtracer.
We received the comments in question (8) that they did not
understand the concept of trace table. Although we explained
and demonstrated how to understand trace table, most of the
students are not familiar with the concept of trace table within
the conventional computer programming education. Some
students did not understand that the trace table represents the
execution order of the steps within a program and the value of
the variables at each step.

On the other hand, 10 students answered that they already
understand computer programming. More difficult problems
should also be provided to motivate such type of students
having sufficient programming fundamentals.

Next we shall consider questions (4) and (5). As illustrated
in Fig. 8, 60% of the students answered that the pgtracer
questions are easy or fair. This means that the provided
questions were not too difficult and are at the appropriate level
as a self-learning exercise.

We also find that 75% of the students answered that
pgtracer is useful to learn computer programming as illustrated
in Fig. 9.

We received some student comments collected from
question (8).

TABLE 5
OTHER SUBJECTS WITH STUDENT ASSIGNMENT

Department Subject Name
Mechanical and

Intelligent Systems
Engineering

 Introduction to Micro Computer Programming
 Engineering Drawing II
 Manufacturing Practice II

Architecture and Civil
Engineering

 Introduction to Micro Computer Programming
 Surveying and Surveying Practice II
 Drawing and Design I

Biological and
Chemical Systems

Engineering

 Introduction to Micro Computer Programming
 Experiment for Bioengineering

Fig. 6 Relationship between the Spent Time per Week

for the Current Subject and Other Subjects

5%

13%

15%

18%

19%

31%

69%

0% 20% 40% 60% 80%

Other Reason

Already understand computer programming

Pgtracer score do not affect evaluation

I hate computer programming

I did not understand how to use pgtracer

The exercise was tedious

Did not have enough time

Answer Ratio (%)

Fig. 7 Reasons of not Solving More than 9 Questions

TABLE 4
QUESTIONS TO THE STUDENTS

(1) Average time to answer the questions per week
(2) Average time to work on other exercise per week

(3) Did you solve more than 9 questions from question (1)-1 to
(6)-3 ?

(4) If the answer to question (3) is yes, how was the difficulty
level of the questions?

(5) If the answer to question (3) is yes, was the exercise useful
to learn computer programming?

(6) If the answer to question (3) is no, select reason from the
provided list.

(7) If you select “others” in question (6), please specify the
reason.

(8) Provide comment and/or suggestion to improve pgtracer if
you have some.

The current pgtracer cannot show the entire columns of the

trace table when the trace table is too wide. Although the
entire columns can be displayed by shrinking the contents, the
shrunk contents can be unreadable for the students. As a result,
we sometimes find unfilled blanks which are not displayed on
a web browser. We have notified this to the students but some
of the students missed the notice. It is important to keep the
width of the trace table small such that the entire columns of
the trace table are displayed without shrinking the contents.
This requires a careful selection of the displayed/hidden
columns and the order of the displayed columns.

Some students provide comment that pgtracer should be
utilized within the lecture. More collaboration is required
between the lecture and homework to facilitate self-learning.

B. Student Interview
We also interviewed the students who solved more

questions than average. They said that fill-in-the-blank
question is easy to solve than creating a program from the
scratch. The self-learning mode quickly provides correctness
judgement after filling a single blank. Such function is
evaluated favorably so that we can conclude that the self-
learning mode is an effective means to facilitate students’
motivation. The students said that they can clearly understand
basic grammar and behavior of the program. Such positive
effect can be expected to the programming education using
pgtracer.

Some students respond that they understand how to develop
correct algorithm by reading comments associated to the
program described according to our programming guidelines.
Reading a good program is an effective means to learn
computer programming. Pgtracer can facilitate careful reading
of such programs by providing fill-in-the-blank question of the
trace table.

Some of the students said that they solved the problems
through discussion with their friends. We can expect to
facilitate group learning or LTD (learning through discussion)
using pgtracer.

We have sent e-mails to the students each time we provided
new problems. Some students said that such messages are
useful for them to continue motivation of learning.

C. Instructor Interview
We also interviewed the primary teacher of the target class

and obtained the following comments.

 Since pgtracer allows to define various types of blanks
depending on the understanding level of the students, I
can create wide range of problems which can cover both
programming beginners and experienced students.

 Since pgtracer shows skeleton of the program so that it
is suitable to teach good programming skill.

 Pgtracer is suitable to teach execution flow of a
program.

 Difficulty level of the exercise is appropriate since basic
problem and relatively difficult problem are both
provided.

 Most of the students using pgtracer achieved the highest
level score at the final examination. Some of these
students achieved 10% more score compared with the
first semester.

 It is recommended to improve pgtracer to visualize
behavior of the program. Then the understanding level
of the students will be improved.

These comments are essentially the same as our expectation
to develop pgtracer.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we conducted an self-learning experiment

using pgtracer at an actual programming course. We observed
certain skill up of the students. Both of the students and the
primary teacher of the course told that pgtracer is useful for
programming education. Pgtracer questions can be stored to
the DB for future reuse. Main obstacle to use pgtracer is the
unfamiliarity to the trace table from the viewpoint of the
students.

As a future work, we are planning to investigate effective
means to teach trace table to the students. Appropriate
incentive mechanism will also be investigated through PDCA
cycle illustrated in Fig. 1.

REFERENCES
[1] T. Kakeshita, R. Yanagita, K. Ohta, “Development and evaluation of

programming education support tool pgtracer utilizing fill-in-the-blank
question”, Journal of Information Processing: Computer and Education,
Vol. 2, No. 2, pp. 20-36, Oct. 2016. (in Japanese)

[2] T. Kakeshita, K. Ohta, “Student log analysis functions for web-based
programming education support tool pgtracer”, 17th International
Conference on Information Integration and Web-based Applications &
Services (iiWAS2015), Brussels, Bergium, pp. 120-128, Dec. 2015.

[3] M. Murata, T. Kakeshita, “Analysis method of student achievement
level utilizing web-based programming education support tool pgtracer”,
5th International Conference on Learning Technologies and Learning
Environment (LTLE 2016), Kumamoto, Japan , pp. 316-321, July 2016.

0% 20% 40% 60% 80% 100%

Very Useful Somewhat Useful Fair

Rather Unuseful Completely Unuseful

Fig. 9 Is pgtracer useful to learn computer programming?

0% 20% 40% 60% 80% 100%

Very Easy Rather Easy Fair Rather Difficult Very Difficult

Fig. 8 Difficulty Level of the Questions

	I. Introduction
	II. Programming Education Model using pgtracer
	III. Course Planning
	IV. Preparing Fill-in-the-Blank Questions Using pgtracer
	V. Analysis of Student Achievement
	VI. Feedback to the Instructor
	VII. Overall Evaluation
	A. Analysis of Questionaire to the Students
	B. Student Interview
	C. Instructor Interview

	VIII. Conclusion and Future Work
	References

