
Analysis of Student Activity and Its Effect Utilizing
Programming Education Support Tool pgtracer

Miyuki Murata
Faculty of Liberal Studies

National Institute of Technology,
Kumamoto College
Yatsushiro, Japan

m-murata@kumamoto-nct.ac.jp

Naoko Kato
Faculty of Liberal Studies

National Institute of Technology,
Ariake College
Omuta, Japan

naoko@ariake-nct.ac.jp

Tetsuro Kakeshita
Graduate School of Information

Science
Saga University

Saga, Japan
kake@is.saga-u.ac.jpd

Abstract—In this paper, we analyze learning activity of
students and its effect when we utilize the programming
education support tool pgtracer to provide homework for their
programming course. We assigned homework utilizing pgtracer
to the students and incorporated its learning achievement to their
evaluation of the course. As a result, this method improved the
learning activity of the students. Their understanding of the
trace table was related to understanding of the programming.
Their answering processes to reach to a correct answer varied
according to their programming skill. As for their
understanding of the program, those who continuously did their
homework understood a program better than those who only
prepared for the exam in a short term. Therefore, we can
conclude that providing homework utilizing pgtracer is effective
for students’ centered learning of programming.

Keywords—Learning Analytics (LA), computer programing
education; e-learning; Moodle; fill-in-the-blank question

I. INTRODUCTION
Computer programming is essential at national institute of

technology and university majored in science and engineering.
Recently Japanese government decided to start university
entrance examination containing computer programming from
2025. The importance of programming education is increasing.

However, we often find students with low programing skill
in an actual programming class. It is useful for a student to
develop as many programs as possible in order to acquire
practical programming skill. However the students cannot
practice enough in an actual class, because there is a limitation
of teaching staff and time. In order to compensate the lack of
them, students need learning outside of the class. It is a usual
case that the students tend not to learn themselves only by
entrusting their willingness. The teacher cannot recognize the
learning activity of the students outside of the class. When the
teacher gives the student homework and some reports, their
burden will become heavy to mark and to confirm submission
status of each student.

We are developing a programming education support tool
pgtracer working on the web [1-3]. Pgtracer works as a
Moodle plug-in so that pgtracer provides an learning

environment to a student at any time and place. Pgtracer
provides fill-in-the-blank programming questions to the
students. The teacher can define various types of blanks within
the program and corresponding trace table. Furthermore the
automatic scoring function of pgtracer reduces the teacher’s
burden to evaluate student answers. Pgtracer automatically
collects learning activity data of the students and provides data
analysis functions. The data analysis functions will also
support teachers to recognize learning activity and achievement
of each student and the entire class.

There are many support tools for programming education.
[4] provides an environment using learning history and
provides various analysis function for a teacher and a student.
but it cannot trace the values of variables. [5] provide a fill-in-
the blank question written in Java. But it does not provide log
analysis functions and does not support trace table. [6] is a
framework that guides incorporation of learning analytics
mechanisms in computer programming education. However
the detail of the collected data is not presented. [7] is a web-
based Python programming environment which collects and
analyzes learner’s programming process. This environment
also does not provide a function to estimate student’s
achievement level. There also are researches about learning
analytics for programming education. [8, 9] help individual
students by analyzing compile errors and feeding the result
back to the students. On the other hand, pgtracer can also
detect execution errors of the program.

We provide various programming homework using pgtracer
to the students at a lecture called “Fundamental of Computer
Science” since 2016 [10]. The lecture is provided for the
second year students of the Kumamoto Institute of Technology.
However the learning activity of the student was not enough in
2016 since the learning achievement was not reflected to the
student’s score. We also found many students who did not
understand trace table.

In this paper, we address the above issues by incorporating
the learning achievement outside of the class using pgtracer to
each student evaluation. In order to encourage student’s
learning activities, we carry out quizzes which contain fill-in-
the-blank questions assigned as past homework, and reflect
them on the student's evaluation of the class. To promote

261

2018 7th International Congress on Advanced Applied Informatics

978-1-5386-7447-5/18/$31.00 ©2018 IEEE
DOI 10.1109/IIAI-AAI.2018.00057

understanding of the trace table, we explain trace table in more
detail and use the same trace tables to explain value changes of
the variables in the lecture. We assign homework utilizing
pgtracer every week. The homework corresponds to the
lecture contents defined in the syllabus. We monitor the
learning activity of the students using the data analysis function
of pgtracer, and find the effectiveness of our strategy. As a
result, we find that students’ learning activity was improved
by incorporating the learning achievement utilizing pgtracer.
Students’ understanding of the trace table was related to
understanding of the programming.

This paper is organized as follows. The next section
introduces fill-in-the-blank questions provided by pgtracer.
We next explain the course planning in Section 3. In Section 4,
we analyze the student’s understanding of the program and
trace table, learning activity and the relationship between
student’s intrinsic motivation for programming utilizing the
collected data by pgtracer. The result are provided and
discussed in the last section.

II. PGTRACER AND FILL-IN-THE-BLANK QUESTION
A fill-in-the-blank question of pgtracer is composed of a

C++ program and a trace table as shown in Fig.1. The trace
table represents execution order of steps with the routine name,
values of each variable and output at each step. A teacher can
define various types of blanks within the program and trace
table [1]. Some examples of the blanks are a sequence of
tokens or a statement within a program; step number and
variable value within a trace table. A student fills the blanks so
that the program and the trace table become consistent. The
trace table is important for program comprehension and can
help students when they get stuck during programming. Thus

we expect that a trace table is an effective means for
programming education especially for beginners.

When a student fills a blank, pgtracer automatically collects
student log. A log record contains student id, question number,
place of the blank, student answer, the evaluation result and the
time at which the blank is filled. Pgtracer provides various
types of data analysis functions to analyze the collected log [2].
A student can check their own learning activity, average and
distribution of the entire class using the analysis function. A
teacher can also check each student and question such as right
answer ratio, required time and an answer process by utilizing
the data analysis functions. Then the teacher can provide
various feedback to the students.

The teacher can also define various options to the created
questions. The options include question mode (self-learning
mode or examination mode), show/hide of the correct answer
after automatic scoring, show/hide of the analysis function to
the students, coloring of the corresponding step when a student
selects a blank within a trace table. By setting self-learning
mode option to the question, students can know whether their
answers are correct just after their filling of each blank.

III. EXPERIMENT PLAN
The purpose of this experiment is to clarify the learning

behavior of the students when we evaluate students using the
pgtracer exercise results, and to detect topics that the students
understand insufficiently.

A. Course Planning
The experiment was performed for 130 students at the

second academic year course named “Fundamental of

Fig. 1 Fill-in-the-Blank Question (2)-2 of pgtracer.

Program

Trace Table

Step Step Routine

262

Programming I” of Kumamoto Institute of Technology from
October 2017 to February 2018. The students are majored in
mechanical engineering, electronics, civil engineering,
architecture, bio technology or chemistry so that they are not
majored in computer science. It is the first course for the
students to learn computer programming. One of the authors is
giving lecture and exercise of the course.

Table 1 represents the lecture plan of the course and the
number of questions included in the homework. The table also
contains the schedule of reports, quizzes and questionnaires.
With the experience of last year in mind, we reflected the score
of quizzes and examinations which contain pgtracer questions
on the evaluation of the student’s achievement. Specifically,
the ratio of evaluation contains 60% average of examination,
20% report and 20% quizzes.

We carried out two examinations using e-learning system
introduced in our campus. These examinations contain two
fill-in-the-blank questions assigned as homework. We also
assigned two reports to the students. The students submit a
program, an execution result and a flowchart. At the same
time, the students must take an oral examination. A quiz was
carried out using pgtracer. The quiz contains three fill-in-the-
blank questions assigned as past homework.

We explain how to register to pgtracer and how to use
pgtracer at the first two weeks to support the students who do
not understand the concept of trace table. Furthermore, we
use a similar trace table when we explained the transition of a
variable value in order to decrease the gap between
explanation in the lecture and a fill-in-the-blank question
provided by pgtracer.

B. Homework Preparation Policy
We prepared the fill-in-the-blank questions for the

homework according to the following policy.

 Define the blanks at a value of variable, a part of
statement and execution step to confirm that the
students understand the lecture.

 Clarify the educational objective of each question.

 Try to decrease student’s workload by setting the
following guidelines for the question size to facilitate
continuous use of pgtracer.

 Two to three questions per lecture.
 Three to five blanks per question.

 The question is represented in the self-learning mode.
This is because, through our experience last year, we
found that evaluation of student answer just after the
student fills a blank increase the student’s intrinsic
motivation [10].

 We show the correct answer after the students submit
the answer.

Fig. 1 illustrates Question (2)-2, and Table 2 represents the
information of Question (2)-2. The number of blanks within a
trace table is counted by the number of blanks having different
values of the previous row.

The deadline of homework is the next lecture. There is no
penalty when a student did not finish the homework. We
monitored learning activity of students and difficulty of the
questions.

C. Questionnaire to the Students
We performed a questionnaire three times to confirm the

student’s intrinsic motivation for programming and

TABLE 1
LECTURE PLAN

Second Semester
Week Contents # of

Questions
Note

1 How to Execute
Programming - User Registration

of pgtracer

2 Constant, Variable,
Assignment 2 Teach How to

Use pgtracer
3 Output (printf),

Operator 2 1st Questionnaire

4 Flowchart 3
5 Input (scanf, getchar) 3 1st Quiz
6 Conditional Branch 3 Report1
7 Mid-Term Exam -
8 Conditional Branch 3 2nd Questionnaire
9 switch statement 2

10 Nested Conditional
Branch 3

11 for Statement 3 2nd Quiz

12 while and do while
statement 3 Report2

13 break, continue 3
14 Exercise 2
15 Examination -
16 Summary - 3rd Questionnaire

TABLE 2
INFORMATION OF QUESTION(2)-2

Description Calculate and print a salary
allowance.

Educational Objective Students can trace assignment
statements.

Difficulty Level Easy
Place of Blank (# of blanks) Within a trace table (5)

TABLE 3
QUESTIONS TO THE STUDENTS

(1) Did you understand how to use pgtracer?
(2) Did you understand a trace table?
(3) How was the difficulty level of the questions?
(4) How many blanks per a question?
(5) Did you have intrinsic motivation to learn programming?
(6) Average time to answer the question per week
(7) Average time to work on other exercise per week
(8) Was the exercise using pgtracer useful to learn computer

programming?
(9) Did you refer the programming style (indent and comment)

of pgtracer to create your program?

263

understanding level for a trace table. Table 3 represents the
questions to the students. We asked the questions (7) to (9)
only in the third questionnaire.

IV. ANALYSIS OF STUDENTS ACTIVITY

A. Understanding of Computer Programming
By analyzing the student's log, we find the following

distributions. The answer ratio of each question is in the range
of 80.0-99.2% so that most of the students solve the questions.
The average of the right answer ratio at the first trial
distributes within 63.4-92.2%. The median of the required
time distributes in the range of 63.5-436.5 seconds. The
average scores of most questions exceed 80%. This indicates
that the questions were easy for the students.

The questions with average less than 70% are the questions
(3)-2, (4)-3, (12)-3, and (14)-2. These questions have blanks
within the program. Question (10)-1 contains blanks in the
trace table corresponding to a for-statement. Question (11)-1
includes a nested for-statement and corresponding blanks in
the trace table. We find that the students need longer time to
fill the blanks within the trace table of the iterative statement.

Fig. 2 illustrates relationship between the average of the
examinations score and the average score of the four questions
whose score averages are less than 70%. Here we consider the
students who completely answer the four questions

The correlation coefficient between these two is 0.32, thus
there is a weak correlation between them. The correlation
coefficient between the average of the examination score and
the average of required time of the four questions is 0.07, so
that there is no correlation between them. By observing the
free description in the third questionnaire, we found some
students who learn from his friend to solve the questions.
Then a student with low programming skill can obtain a high
score. We found many empty answers which the date of the
first trial was after the deadline. They just view the questions
to prepare the examination.

On the other hand, we find that the correlation coefficient
between the average of the overall required time and the
average of examinations is -0.13. The students who have high
programming achievement answered the questions more
quickly. However, as the question becomes difficult, the
students who obtained a high score require longer time.
Actually the questions with positive correlation coefficient are
(6)-1, (10)-3 and (14)-1 except the four questions explained
before. The average score of these questions are less than
80% except for the case of (6)-1.

Table 4 represents the blanks whose right answer ratios are
less than 80%. All the blanks are within an iterative statement
except for Question (4)-3. The right answer ratio of a blank in
Question (14)-1 is the lowest. The corresponding blank is
defined in a nested for-statement. From these facts, we can
conclude that filling the blank within an iterative statement is
difficult for the students.

By observing the answer processes of the Question (14)-1
in detail, we found characteristic answer processes below.

 Student 1 has high ability of computer programming,
because the average of his examination is 94.5%.
After he repeated filling the blank using variable num
and i, he finally filled the right answer.

 Student 2 finally filled the right answer, but he filled
some constants in the blank at first. He noticed to use
two variables, num and i, after he considered long time
at the 28th step. The average of his examinations is
80.5%.

TABLE 4
BLANKS WHICH RIGHT ANSWER RATIO AT FIRST TRIAL LESS THAN 80%

Question Place of Blank
Right answer is in i

Right Answer
Ratio

Average number
of trials

Typical Wrong Answers. The number in () means the number of
answers. If it is blank that mean one answer.

(14)-1 If(j< num-i){ within a
nested for statement 44.7% 5.8 No Answer (23), num (5), 5 (5), 4 (3), i (3), 3, num+i,

num/10, sum-1, =num

(4)-3 int hour; within a variable
definition statement 74.4% 4.3 No Answer (14), int hour (4), 1, 1 30 *1, 90, hour,

hour=?, int, int<hour>, printf, sum hour

(11)-3 pow = pow * 2; within a
for satement 76.3% 5.0 No Answer (16), 1024 (3), 10, 2*n, 32, 4, j++, n*2, n^2,

pow*j

(12)-3 }while(cnt_pos < 5);
within a do-while statement 76.7% 4.2

No Answer (5), cnt_pos==5 (3), cnt_pos<6 (2),
"%d".cnt_neg, break, cnt_pos, cnt_pos>5, cnt_pos>=5,
cnt_pos<=5, num<0, num<5, num<8, pos==5

(14)-1 printf(“\n”); with in a
nested for statement 76.8% 3.5 No Answer (4), "" (3), \n (3), ", "", "%d", ":", %, *, *2

*1 means 1 hour and 30 minutes, *2 means newline

Fig.2 Relationship between the Averages of pgtracer Score and
Examination Score

0

20

40

60

80

100

0 20 40 60 80 100

Av
er

ag
e

Sc
or

e
of

 p
gt

ra
ce

r

Average Score of Examination

264

 Student 3 filled some constants in the blank at first,
then he noticed to use variable num. However, he did
not notice to use variable i, thus he could not fill the
right answer. The average of his examinations is
72.5%.

 Student 4 has low ability of programming, because the
average of his examinations is 66.0%. He repeated
filling completely wrong answers in the blank, because
he could not understand the program used in the
question.

By the above consideration, we found that there is the
difference among student’s answer processes to lead the right
answer and the difference is caused by their achievements of
programming.

B. Understanding of a Trace Table
Fig. 3 illustrates the answer of question (1). In the first

questionnaire, 79.8% of the students answered that they
understand the concept of trace table. The percentage
increases to 93.0% in the third questionnaire. We explained
the trace table concept in the lecture, and used a similar table
for tracing the change of a variable value. We consider that
these helped students to understand the concept of trace table.

Table 5 represents cross tabulation of the answers of the
question (1) and the average of the examination for each
answer. The correlation coefficient for the mid-term
examination is 0.20 and that for the final examination is 0.27.
The readers can observe a weak correlation between the
understanding of trace table and the examination score. A
higher average score at the mid-term examination for the
students who answer “Completely unintelligible” is the only
exception. This is because a student answer “Completely

unintelligible” and scored 92% at mid-term examination. The
student did not resolve the fill-in-the-questions at all. The
average score for this case becomes 67.0% except the student.

C. Student Activity
Fig. 4 illustrates the answer of question (2). More than

90.0% of the students answered that they understand how to
use pgtracer. We explained the purpose of pgtracer and the
user registration at the first two lectures for 30 and 20 minutes
respectively. We improved the explanation considering our
experience of the previous year.

More than 80% of the students finished the homework
before the deadline until 9th week. Student intrinsic
motivation is kept high until the mid-term examination. We
also provided time to work on the homework during a lecture.

On the other hand, the ratio of the students who finished
homework in 10th week to 12th week within the deadline
decrease less than 60%. We presume three reasons for this.
The student got the winter vacation between 10th and 11th
weeks. We gave an assignment to the students at 6th week, so
some students gave higher priority to the assignment than the
homework. We announced the student’s activity and urged to
do homework at 8th week, but we did not do this after that.

Fig. 5 illustrates the total number of answered questions for
each week. The date represented in the horizontal axis are the
checked date of the student activity. Fig. 5 also illustrates the
date performed the examination, quizzes and questionnaires.
Here, three date mean there are three target classes. Observing
Fig. 5, we find that the total number of answers increase in the

0% 20% 40% 60% 80% 100%

1st

2nd

3rd

Completely Intelligible Rather Intelligible

Intelligible Rather Unintelligible

Completely Unintelligible
Fig. 4 Understanding How to Use pgtracer

TABLE 5
UNSERSTANDING OF TRACE TABLE AND THE EXAMINATION SCORE

Mid-Term

Examination
Final

 Examination

#of

students
Average

score
#of

students
Average

score
Completely
Intelligible 39 80.3 36 75.6

Rather Intelligible 48 78.3 54 76.0
Intelligible 30 79.1 30 68.5
Rather Unintelligible 9 67.0 8 64.5
Completely
Unintelligible 3 76.0 1 51.0

0% 20% 40% 60% 80% 100%

1st

2nd

3rd

Completely Intelligible Rather Intelligible
Intelligible Rather Unintelligible
Completely Unintelligible

Fig. 3 Understanding of Trace Table

Fig.5 Total Number of Answers

0

500

1000

1500

10
/1

3

10
/2

0

10
/2

7

11
/1

0

11
/1

7

11
/2

4

12
/8

12
/1

5

12
/2

2

1/
12

1/
19

1/
26 2/

2

2/
9

2/
16

To
ta

l N
um

be
r o

f
An

sw
er

s

M
id

-T
er

m
Ex

am
in

at
io

n
(1

1/
21

)

Fi
na

lE
xa

m
in

at
io

n
(2

/7
)

1s
tQ

ui
z(

11
/7

,8
,9

)

2n
d

Q
ui

z
(1

2/
19

,2
0,

21
)

2n
d

Q
ue

st
io

nn
ai

re
(1

2/
5,

6,
7)

1s
tQ

ue
st

io
nn

ai
re

(1
0/

17
,1

8,
19

)

3r
d

Q
ue

st
io

nn
ai

re
(2

/1
3,

14
,1

5)

265

periods which contain two quizzes and two examinations. We
find that the students prepared for the quizzes and
examinations. We also observe that the total number of the
answers is small before the quizzes and the examinations. We
consider that the students intended to solve the homework just
before the quizzes and the examinations not just after the
lecture.

All of the questions have more than 80% of the answer ratio,
and the average answer ratio is 92.3%. The answer ratio was
much improved compared to our experiment in 2016. The
reason is clear because the provided questions did not affect
evaluation of the students.

Only 9 students (6.9%) stopped answering within 10
seconds at more than six questions. Thus we can conclude that
most of the students answered the questions seriously.

Fig. 6 illustrates the result of question (3). In all of the
questionnaires, more than 50% of the students answered
“Reasonable”. Observing the number of the blanks per
question, more than 70% of the students also answered
“Reasonable”. 81.3% of the students answered more than 80%
of the questions. 83.0% of the students finished homework for
one lecture within 30 minutes. From the above reasons, we can

conclude that the difficulty level and the number of blanks are
reasonable to the student.

Next, we examine that the number of students who finished
homework within the deadline decreased after the mid-term
examination. We consider that this is caused by the difference
of scores between the mid-term and the final examinations.

The overall average between the two examination scores
decreases 5.3%. The average decrease about the students
(Group 1) who finished homework within the deadline after
the mid-term examination is 4.3%, while the average decrease
about other students (Group 2) is 7.2%. The students in
Group 2 had answered the questions to prepare for the
examinations and quizzes. We can thus conclude that
continuous activity improves achievement level of computer
programming than intensive activity.

D. Intrinsic motivation of the student
Fig. 7 represents the answers to question (5). The 75.2% of

the students answer “Very strong” or “Rather Strong” in the
first questionnaire. In the second questionnaire, the ratio
slightly increased to 76.7%, and deceased to 68.2% in the final
questionnaire. We can presume that the students were
interested in computer programming. But the percentage
decreases as the lectures becomes difficult for the students.

Table 6 represents cross tabulation between answer of
question (5) and the statistics at the two examinations. We
observe a weak correlation coefficient between the student’s
answer and each examination score.

TABLE 6
 INTERISTIC MOTIVATION TO PROGRAMMING AT EACH EXAMINATION

Answer of
Question(5)

Mid-Term examination Final Examination
2nd Questionnaire
(# of students)

Average of
Examination
Score

Average of
Answers Rate
within the
Deadline

3rd Questionnaire
(# of students)

Average of
Examination
Score

Average of
Answers Rate
within the
Deadline

Very Strong 36 79.9 84.0% 28 76.2 73.0%
Rather Strong 63 79.8 92.1% 60 75.3 77.1%
Neutral 25 73.5 82.8% 28 70.9 58.0%
Rather Weak 3 76.0 89.7% 7 60.1 53.1%
Very Weak 2 64.0 42.3% 6 65.2 67.2%

TABLE 7
THE NUMBER OF STUDENT ANSWERED LESS THAN “RATHER WEAK” IN 3RD

QUESTIONNAIRE AND ANSWERING ACTIVITY OF THEM

Answer of question (5)
in the 3rd Questionnaire Very Weak Rather week

Questionnaire First Second First Second
Very Strong 0 1 0 0
Rather Strong 1 2 2 2
Neutral 2 2 4 4
Rather Weak 0 0 1 1
Very Weak 3 1 0 0
Answer rate within the
deadline 67.2% 53.1%

Average of answered
questions 68.0 65.4

0% 20% 40% 60% 80% 100%

1st

2nd

3rd

Very Easy Rather Easy Reasonable

Rather Difficult Very Difficult

Fig.6 Difficulty Level of the Questions

0% 20% 40% 60% 80% 100%

1st

2nd

3rd

Very Strong Rather Strong Neutral
Rather Weak Very Weak

Fig.7 Interest and Intrinsic Motivation of the Students

266

Considering about mid-term examination, the average score
of the students who answer “Very Strong” is the highest
(79.9%). The lowest one is the average score of the students
who answer “Very Weak” (64.0%). The difference of these
scores is 25.9 points. Observing the answer rate within the
deadline, the rate of the students who answer “Very Weak” is
the lowest. We can thus consider that the intrinsic motivation
to the computer programming influence on the examination
score.

However, the average score of the students who answer
“Rather Weak”, is the lowest in case of the final examination.
We examine the students who answer “Rather Weak” or
“Very Weak” in the third questionnaire to analyze the reason
of the difference. Table 7 represents the result of the first and
the second questionnaires about them.

The half of them answer “Very Weak” in the first
questionnaire too. Although their intrinsic motivation
increased temporary, we consider that their intrinsic
motivation was low through the second semester. On the
other hand, the students who answer “Very Weak”, except for
one student, answered more than “Neutral” in the first
questionnaire. We can presume that their intrinsic motivation
decreased more quickly during the semester.

Observing the average number of questions solved before
the deadline, the number of students who answer “Very
Weak” is larger than the number of students who answer
“Rather Weak”. Therefore, the students who answer “Very
Weak” answered seriously, but they have a sense of difficulty.
Therefore, the students who answer “Very Weak” in the final
questionnaire have recognized that they are not good at
computer programming from an early phase, but they did
homework seriously. On the other hand, the students who
answer “Rather Weak” in final questionnaire gradually
stopped to work on the homework because of the declining
intrinsic motivation. Thus, we can presume that their scores
of the final examination fell. Therefore, we find that the
decline of examination score is larger the student who
gradually lose his intrinsic motivation than the student whose
intrinsic motivation is low from an early phase in the semester.

V. CONCLUSION AND FUTURE WORK
In this paper, we prepared questions for self-learning

utilizing pgtracer and observed the learning activity of the
students and its effect. As a result, we found the followings.

The students who continuously worked on their homework
understood computer programming better than those who
prepared for the exam in short term. Iterative statements were
difficult for the students. In addition, the understanding of the
program becomes better for the students understanding trace
table better. Furthermore, the student’s answering process to
lead a correct answer varied according to each programming
skill of them.

By examining the learning activity of the student, it was
revealed that pgtracer could support self-learning of the
student. However, we need plans to keep student intrinsic
motivation. In addition, it is important to detect the students

losing interest and willingness from the middle of the semester
since their drop tend to be bigger than the students with low
intrinsic motivation from the beginning.

As a future work, we are planning to analyze the different of
student’s processes to lead to a correct answer depending on
their understanding level. We shall also provide feedback
considering understanding level of each student. Such
feedback will be useful for self-learning. Then, it will be
necessary to provide retention function so that a student can
learn continuously We also have a plan to extend pgtracer
to automatically generate questions of a desired difficulty
level by setting places of blanks and show/hide of the
comment. In the current lecture plan, we utilize pgtracer in
one direction such as a homework assignment reflecting the
content of the lecture. We are planning to design interactive
lecture activity, such as explaining problems with a low
answer rate in classes or assigning the same problems again.

ACKNOWLEDGMENT
We appreciate for the cooperation of the students who joined
the evaluation experiment using pgtracer. This research is
supported by JSPS KAKENHI under grant numbers
16K01022 and 17K01036.

REFERENCES
[1] T. Kakeshita, R. Yanagita, K. Ohta, “Development and evaluation of

programming education support tool pgtracer utilizing fill-in-the-blank
question”, Journal of Information Processing: Computer and Education,
Vol. 2, No. 2, pp. 20-36, Oct. 2016. (in Japanese)

[2] T. Kakeshita, K. Ohta, “Student log analysis functions for web-based
programming education support tool pgtracer”, 17th International
Conference on Information Integration and Web-based Applications &
Services (iiWAS2015), pp. 120-128, 2015.

[3] M. Murata, T. Kakeshita, “Analysis method of student achievement
level utilizing web-based programming education support tool pgtracer”,
5th International Conference on Learning Technologies and Learning
Environment (LTLE 2016), Kumamoto, Japan , pp. 316-321, July 2016.

[4] Ohashi, et al., “A Programming Learning Base System for Support
Tools Utilizing Learning History”, IEICE technical report: 133(316),
pp.15-20, 2013. (n Japanese)

[5] N. Funabiki, et al., “Analysis of fill-in-the-blank problem solutions and
extensions of blank elent selection algorithm for Java programming
learning assistant system”, World Congress on Engineering and
Computer Science (WCECS 2016), San Francisco, USA, pp. 237-242,
Oct. 2016.

[6] C. Malliarakis, M. Satratzemi, S. Xinogalos, “Intergrating learning
analytics in an educational MMORPG for computer programming”,
IEEE 14th Int. Conf. of Advanced Learning Technologies, pp. 233–237,
2014.

[7] J. Helminen, P. Ihantola and V. Karavirta, “Recording and analyzing in-
browser programming sessions”, 13th Koli Calling Int. Conf. on
Computing Education Research, pp. 13-22, 2013.

[8] X. Fu, et al., “Error Log Analysis in C Programming Language
Courses”, The 23rd International Conference on Computers in
Education (ICCE2015), pp.641-650, 2015.

[9] X. Fu, et al., “Error Log Analysis for Improving Educational Materials
in C Programming Language Courses”, The 2nd ICCE workshop on
Learning Analytics (LA2015), pp.412-417, 2015.

[10] T. Kakeshita, M. Murata, “Application of Programming Education
Support Tool pgtracer for Homework Assignment”, International
Journal of Learning Technologies and Learning Environments, 2018 (in
Press).

267

