
Utilizing Software Engineering Education Support System ALECSS
at an Actual Software Development Experiment: A Case Study

Mika Ohtsuki and Tetsuro Kakeshita
Department of Information Science, Saga University, Saga, Japan

{mika, kake}@is.saga-u.ac.jp

Keywords: Software Engineering Education, DevOps Tool, Software Verification, Coding Style Checking, Execution
Checking, Static Checking, Peer Review.

Abstract: We have proposed a software engineering education support system named ALECSS in our previous paper.
ALECSS utilizes various DevOps tools such as Jenkins, Git, JUnit, Checkstyle and FindBugs to automatically
check student’s programs from various viewpoints and to quickly provide feedbacks to the students. At the
same time, ALECSS collects student’s log so that a teacher can easily observe the status of each student and/or
each project team to improve software engineering education. In this paper, we utilize ALECSS at an actual
software development experiment for self and peer review of the source code. Students are grouped into
project teams and each student can view summary pages for the student or the team containing the messages
generated by the DevOps tools integrated into ALECSS. We also collected feedback from the students and
received many positive comments.

1 INTRODUCTION

It is quite important to utilize contemporary software
development tools to realize practical software
engineering education (Nandigam, 2008). It is also
important to teach management of quality, cost and
delivery (QCD) of software development.
Contemporary software engineering education
requires collaboration of students as a team since the
software size is typically too large to work on a
student.

We are teaching collaborative software
development at the third academic year of our
department majored in computer science. In our
class, a student team faces with many problems. For
example, it is hard to see and control progress of the
software development project without appropriate
sharing of the known problems and progress of the
software development tasks at each source code
among team members. It is also necessary to ensure
QCD of the software. In order to cope with such
problems, realistic software developers are shifting to
utilize various DevOps tools (Allspaw, 2009; Bass,
2015).

In our previous paper (Ohtsuki, 2016), we
proposed a software engineering education support
system named ALECSS (Automated Learning and

Evaluation Cycle Support System). ALECSS
automatically checks source codes submitted by a
students and/or a team from various viewpoints and
returns feedbacks to them. Various DevOps tools,
such as JUnit, Git, Ant, Checkstyle, FidBugs and
Jenkins, are utilized for the checking and for the
integration of the checking tools. We also added
original scripts to ALECSS for the checking of test
code and Git working status. A student or a team can
check their codes quickly and can improve them
promptly by utilizing ALECSS. At the same time, the
teacher can easily observe progress of the students
and the team.

We utilized ALECSS to an actual software
development experiment in the 2018 spring semester.
In this paper, we report the results of the experimental
application. Although the students use ALECSS for
the first time, their evaluation of ALECSS is quite
good.

In Section 2, we shall explain the major functions
of ALECSS. We next explain the software
development experiment in Section 3 and how to
utilize ALECSS in the experiment in Section 4. We
present and discuss the result of our evaluation in
Sections 5 and 6. In section 7, we show the related
works and compare them with our contribution.

Ohtsuki, M. and Kakeshita, T.
Utilizing Software Engineering Education Support System ALECSS at an Actual Software Development Experiment: A Case Study.
In Proceedings of the 11th International Conference on Computer Supported Education (CSEDU 2019) - Volume 2, pages 367-375
ISBN: 978-989-758-367-4
Copyright © 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

367

Figure 1: Entire structure of ALECSS.

2 SOFTWARE ENGINEERING
EDUCATION SUPPORT
SYSTEM ALECSS

ALECSS is developed using various DevOps tools
such as Git, Jenkins, Ant, Checkstyle, FindBugs and
JUnit as well as additional scripts for further checking
of the student’s code. Figure 1 illustrates the entire
structure and the behaviour of ALECSS.

A student can edit and submit a source program to
ALECSS by uploading the file(s) to the Git repository
from the integrated development environment
Eclipse. Then Git notifies the file uploading to
Jenkins. Jenkins automatically starts the build tool
Ant by utilizing the submission as a trigger. Ant is
controlled by the configuration file build.xml which
contains setup and execution commands of the
various DevOps tools. The checking results are
collected by Jenkins at the activity log. Then the
student and student team can browse the checking
result and the status report to improve their source
code. The teacher can also browse the same report to
understand status of each project.

Various types of evaluation criteria can be
automatically checked using ALECSS. The criteria
and the implementation of the checking mechanism
are explained at the rest of this section.

2.1 File Structure Checking

We can perform the existence checking of the
required files by using condition tag and available tag
defined as Ant tasks. File Structure Checking is
required for all exercises and the file names are
different depending on the exercise. Furthermore, file
and folder names are assigned depending on the

student number or project name at several exercises.
Therefore, it is necessary to have scripts to generate
appropriate names from student number and/or
project name. Thus we can generate build.xml
utilizing the scripts for each exercise of the
experiment.

2.2 Coding Standard Checking

Coding standard checking ensures that the submitted
Java program keeps one of the default coding style
definitions (Sun Code Conventions and Google Java
style). The checking is performed by executing
coding style checker Checkstyle. Execution of
Checkstyle is defined as an Ant task by using the
taskdef clause in build.xml.

2.3 Compile Checking

Compile checking is a prerequisite of all other
checking. ALECSS executes a standard compilation
by invoking the javac command as an Ant task and
can show the compilation result of the submitted Java
program. If the compilation fails, students can
browse the error messages on Jenkins.

2.4 Output Result Checking

The output result checking is performed to ensure that
the output of the submitted program matches to the
output defined by the specification. ALECSS
executes a compiled Java program and record the
output to the log which can be observed on Jenkins.
Furthermore, we prepare a script to compare the
output log with a predefined file.

Such script can be implemented by using the diff
command if the result is fixed. For the case that the

CSEDU 2019 - 11th International Conference on Computer Supported Education

368

output depends on student number, student name or
project name, we develop a special script using the
same technique as explained for File Structure
Checking.

2.5 Git Work Execution Checking

Git maintains a commitment log storing four types of
Git actions: file addition (add and commit), file
deletion (remove and commit), file update (edit and
commit), revert (return to a former commitment
state). The Git work execution checking examines
the Git log to confirm that a student correctly
performs the required Git operations. The
commitment log can be accessed by the Git log
command. We are developing a script for the Git
work execution checking.

2.6 JUnit Execution Checking

JUnit is utilized to check whether the subroutines in
the submitted program return correct values.
Teachers need to provide a set of test codes executed
by JUnit for the checking. JUnit can be executed as
an Ant task with a junit tag. We can obtain the log
using the task and can observe the number of
successes/failures of the unit test on Jenkins.

2.7 Test Case Null Implementation
Checking

Our experiment also contains exercises to develop
test code. If a student develops an empty test code,
any test will succeed in the JUnit framework. The test
case null implementation checking detects such
empty test cases. This can be implemented by
counting the number of lines in each test case method.
We have developed a Java language parser utilizing
JavaCC to extract a test case method and a script
counting the number of lines of the test case method
(Koga, 2018). The parser and the script are defined
as Ant tasks for automatic execution.

2.8 Test Code Validation

The test code validation is executed to detect
incorrect test code which succeeds for any input. In
order to implement such validation, we prepare
project code which all tests fail. The project codes
are copied to the working area of the student in order
to confirm that the test code developed by the student
correctly fails for the project code.

2.9 Static Code Checking

Static code analysis tool FindBugs is utilized for the
checking to detect pitfalls which can be observed
within a Java source code. Execution of FindBugs is
defined as an Ant task as in the case of Checkstyle.

3 COOPERATIVE SOFTWARE
DEVELOPMENT
EXPERIMENT

Our cooperative software development experiment is
provided for the undergraduate student at the third
academic year. The experiment is a compulsory
subject for graduation and usually about 60 students
are enrolled to the experiment each year. Our depart-
ment is accredited as a computer science program and
the students have learned software engineering and
basic Java programming before the experiment. The
experiment consists of fifteen weeks of 3 hour
exercises. Table 1 represents the experiment plan.

Table 1: Experimental plan.

Week Description
1 Setting up software development

environment (Git and Eclipse)
2 Git Exercise
3 Java Exercise (including Checkstyle and

Javadoc)
4-5 JUnit Exercise
6 Introduction to Group Exercise (Group

formation, Ice Breaking and Explanation of
Requirements)

7-9 Implementation (First Iteration)
Introduction to ALECSS (at Week 9)

10 Peer Review (First Iteration)
11-13 Explanation of Additional Requirements

Implementation (Second Iteration)
Student Survey (at Week 12)

14 Peer Review (Second Iteration)
15 Bug Fix and Second Student Survey

Students work on individual exercises at the first
5 weeks. We introduce Git, Eclipse, Checkstyle,
Javadoc and JUnit during these weeks.

The group exercises starts at week 6. Group
exercises are carried out using the baseline project
initially distributed to the 8 student teams (Cherry,
Dandelion, Lily, Peach, Plum, Rose, Sunflower, and
Violet). Each team consists of 7-8 students. The group
exercise consists of two iterations. Each of the
iterations contains three weeks for implementation

Utilizing Software Engineering Education Support System ALECSS at an Actual Software Development Experiment: A Case Study

369

exercise and one week for peer review by other
students.

We applied ALECSS to the experiment in 2018. At
first, we introduce ALECSS at week 9 so that students
start using ALECSS from the week. At week 9, student
teams can only check their own project using
ALECSS. However they can also utilize ALECSS to
check projects developed by other teams at week 10 by
allowing access to other project. Then at the end of the
experiment, student teams utilize ALECSS for the
second peer review (at week 14) in the second iteration.
We performed the second student survey and collected
the final project data after week 15 where detected bugs
are expected to be fixed.

In the peer review, a group reviews another team’s
project assigned randomly by the teacher and reports
review result containing detected issues. The types of
issues required to be reported are coding standard
violations, portion of algorithms which are not bugs
but contain some problems, software bugs or
unimplemented requirements. The reported issues
are checked by the teachers whether they are
reasonable. A team gets some score when the team
reports reasonable issues and the team loses the same
score when the issue is reported. The score for each
issue is defined as follows depending on the
importance of the issues.
 1/3 : Coding Style Violation
 1-3: Problems in Algorithm
 2-5: Software Bugs and Unimplemented

Specification
The number of issues which can be reported by a

team is at most twenty so that the score to be earned
or lost is bounded.

4 UTILIZING ALECSS AT THE
EXPERIMENT

ALECSS can be executed either automatically or
manually. We have already explained the automatic
execution in Section 2. A student or a team can also
execute ALECSS manually after selecting a project.
The manual checking function is used at the peer
reviews.

Figure 2 represents a result of static code
checking. The warning messages generated by
FindBugs are classified by categories. The red bars
represent the number of warnings with high priority,
while the yellow bars represent the number of
warnings with normal priority. Each category has a
priority represented by the color of the corresponding
bar.

Figure 2: Result of static code checking.

When a student selects a category in Figure 2, the
warnings belonging to the selected category are
shown (Figure 3). Each warning is represented by the
class name and the line number at the File column.
Priority, author and commit ID are also represented.

Figure 3: FindBugs warnings belonging to the
CORECTNESS category.

When a student selects a warning message in Fig.
3, the corresponding code will be shown (Figure 4).
Jenkins also shows the detailed explanation for the
selected warning message.

Figure 4: Code corresponding to a FindBugs warning.

Figure 5 represents messages of the coding
standard checking. This time the warning messages
are classified based on the detected file. It is also
possible to browse the warning messages classified
by the categories as in the case of Fig. 2.

CSEDU 2019 - 11th International Conference on Computer Supported Education

370

Figure 5: Result of coding style checking.

Figure 6 represents a result of JUnit execution
checking. The readers can find that one test failed
while the remaining three tests succeeded. It is also
possible to browse the corresponding source code by
selecting the name of a test method.

Figure 6: Result of JUnit execution checking.

Figure 7: Example result of test case null implementation
checking.

Figure 7 represents the result of test case null
implementation checking. The result contains the test
class name, test method name and the number of
statements in the test method. In this case, for
example, the method “testParse02” contains only one
statement so that we can guess that the method is still
at the initial state and is not implemented yet.

5 EFECT OF INTRODUCING
ALECSS TO THE
EXPERIMENT

Table 2 illustrates the size of each project code at the
end of the first iteration (week 10). The number of
files in each project is the same since file organization
is determined by the teacher. Although implement-
tation is different among the teams, the total code size
is approximately 2000 lines. The readers can observe
that we are using a reasonably large scale code for the
experiment.

The number of test cases of the project is 27 as
instructed from the teacher in the first iteration.

Table 2: Project size at week 10.

Project
Team

of Files
Total #
of lines

Average # of
lines per file

Cherry 19 2002 105.4

Dandelion 19 1997 105.1

Lily 19 1945 102.4

Peach 19 1962 103.3

Plum 19 1909 100.5

Rose 19 1703 89.6

Sunflower 19 1981 104.3

Violet 19 2019 106.3

Table 3: Project size at the end of the experiment.

Project
Team

of
Files

Total # of
lines

Average #
of lines
per file

of Test
Cases

Cherry 26 3130 120.4 44

Dandelion 25 2906 116.2 44

Lily 25 2712 108.5 37

Peach 26 3097 119.1 45

Plum 26 3159 121.5 52

Rose 25 3359 134.4 53

Sunflower 26 3227 124.1 43

Violet 25 3071 122.8 42

Table 3 represents the project size at the end of the
experiment (week 15). Although file organization is
determined by the teacher at the first iteration, several
groups have extra classes. Implementation of the
code is more different among the teams than the first
iteration. The project size is significantly larger than
Table 2. The number of test cases is distributed
between 37 and 53 since the students had to add more
than four originally test cases for each class added
during the second iteration.

Utilizing Software Engineering Education Support System ALECSS at an Actual Software Development Experiment: A Case Study

371

Table 4 represents the number of warnings
generated by Checkstyle, FindBugs and the number
of failed JUnit test cases at the time before review
(week 9) and at the review (week 10). The number of
test cases of all projects is 27 as instructed from the
teacher in the first iteration. “N/A” means that the
project failed to be compiled and the project code was
not checked by the corresponding tool.

Table 4: The number of warnings and failed test cases of
the first iteration.

Project

Team

Checkstyle
Warnings

FindBugs
Warnings

Failed Test Cases

Week

9

Week

10

Week

9

Week

10

Week

9

Week

10

Cherry 141 69 1 1 7 0

Dandelion N/A 66 N/A 1 N/A 0

Lily 95 74 5 7 2 4

Peach 100 81 1 1 4 3

Plum 97 76 3 7 8 1

Rose 78 64 2 1 7 0

Sunflower 73 63 7 2 0 0

Violet 105 N/A 2 N/A 10 N/A

The readers can observe that the number of
warnings and the number of failed test cases are
decreasing from week 9 to week 10 in most cases in
the first iteration. This is the effect of peer review.
Each team utilize ALECSS to detect and fix software
bugs and potential problems by utilizing ALECSS.
The number of Checkstyle warnings is still large at
week 10. We consider that Checkstyle detects
possible coding style errors regardless of their
priorities and student teams do not have enough time
to fix all the warnings with low priority.

However the number of warnings and failed test
cases are increasing in some cases. One reason of this
is that some project team did not finish the
implementation at week 9 and continuously
implement the code just before the peer review.
Another reason is that some project team
misunderstand our instruction and failed to correctly
implement the test code at week 9.

Table 5 shows the number of warnings generated
by Checkstyle, FindBugs and the number of failed
JUnit test cases at the review (week 14) in the second
iteration and at the end of the lecture (final). The
readers can observe that the number of warnings and
the number of failed test cases are decreasing from
week 14 to final in all cases. This is the effect of peer
review as same as the first iteration.

Table 5: The number of warnings and failed test cases of
the second iteration.

Project
Team

Checkstyle
Warnings

FindBugs
Warnings

Failed Test Cases

Week
14

Final
Week

14
Final

Week
14

Final

Cherry 169 178 33 33 11 3

Dandelion 134 130 19 13 15 6

Lily 120 156 16 29 2 3

Peach 186 188 25 20 7 8

Plum 233 194 24 24 11 10

Rose 101 104 45 38 9 5

Sunflower 141 137 43 42 4 3

Violet 126 126 33 29 7 3

Tables 6 and 7 represent the review score and the
number of detected issues categorized by the type of
issues at the peer review in the first and the second
iterations respectively. The review score is calculated
according to the rules which we have explained at the
end of Section 3. The difference of the review score
among the reviewer team is caused mainly by the
utilization of ALECSS by the teams.

Table 6: Review score and the detected issues at the first
iteration.

Reviewer
Team

Review
Score

of
Coding

viola-tions

of Algo-
rithm
issues

of
Bugs
etc.

Reviewed
Project

Sunflower 2 7 0 0 Cherry

Cherry 1 5 0 0 Dandelion

Rose 9 10 3 1 Lily

Dandelion 14 4 5 2 Peach

Peach 7 6 0 3 Plum

Violet N/A N/A N/A N/A Rose

Lily 3 8 1 0 Sunflower

Plum 8 5 2 1 Violet

Table 7: Review score and the detected issues at the second
iteration.

Reviewer
Team

Review
Score

of
Coding

viola-tions

of Algo-
rithm
issues

of
Bugs
etc.

Reviewed
Project

Sunflower 14 4 1 4 Cherry

Cherry 11 2 2 3 Peach

Rose 21 3 2 7 Lily

Dandelion 15 1 2 5 Rose

Peach 5 4 0 2 Dandelion

Violet 16 0 5 4 Plum

Lily 10 3 4 4 Violet

Plum 6 2 3 1 Sunflower

The results of Pearson correlation analysis among
the numbers of warnings, the numbers of failed test
cases and review score are illustrated in Table 8. Here,
C10 and C14 are the number of Checkstyle warnings

CSEDU 2019 - 11th International Conference on Computer Supported Education

372

at week 10 and 14. F10 and F14 are the number of
FindBugs warnings at week 10 and 14. And T10 and
F14 are the number of failed test cases at week 10 and
14. Review1 and Review2 mean the review scores of
iteration 1 and 2. In iteration 1 the numbers of
Checkstyle warnings and the failed test cases are
correlated with review results. In the second iteration,
however, these are not correlated. It implies that the
students could not detect the faults in the target codes
in the second iteration because the code became more
complicated, and the test cases were not enough
because they were designed by the students although
the test case specifications were supplied by the
teacher in the first iteration.

Table 8: Pearson correlation analysis among results

Result
Pair

correlation t-value Df p-value

C10,
Review1

0.903 4.204 4 0.014

F10,
Review1

0.282 0.587 4 0.589

T10,
Review1

0.849 3.207 4 0.033

C14,
Review2

-0.455 -1.251 6 0.257

F14,
Review2

0.0635 0.156 6 0.881

T14,
Review2

-0.395 -1.053 6 0.333

6 STUDENT SURVEY

After the peer review at weeks 10 and 15, we
conducted a student survey to evaluate ALECSS. The
survey contains the following questions.

 Did you utilize ALECSS to check your
project code at week 9? If no, why?

 Did you utilize ALECSS to find issues of
another project at the peer review (week 10)?
If no, why?

 How useful is ALECSS?

 Did you quickly obtain the feedback from
ALECSS?

 Did you get a detailed result from ALECSS?

 Please provide comments to improve
ALECSS.

57 of the 62 enrolled students at week 10 and all
of them at week 15 answered the survey. We shall
report the results of the survey in the succeeding
subsections.

6.1 Utilization of ALECSS for Their
Own Project

47 students (82.4%) at week 10 answered that they
used ALECSS to check their own project. The ratio
is quite high considering that they use ALECSS for
the first time at week 9. The reasons of not using
ALECSS at this week are as follows. Since some of
the teams are still working on the implementation of
the code, they could not have enough time to
understand and utilize ALECSS for the checking of
their own code.

The students also replied the following questions
in five levels.

Q1. Was ALECSS useful to check your own project?

Q2. Did you quickly obtain the result from ALECSS?

Q3. Did you get the detailed result from ALECSS?

Figure 8: Evaluation of ALECSS at week 9.

As shown Figure 8, we obtained positive answers
(5 or 4) from 89% of the students for usefulness, 65%
for quick feedback and detailed checking. The
number of negative answers (2 or 1) is quite few.

At week 15 after the second iteration, 55 students
(89%) answered that they used ALECSS to check
their own project. Figure 9 shows the results for the
evaluation of ALECCS.

Figure 9: Evaluation of ALECSS at week 15.

We obtained positive answers (5 or 4) from 83.6%
of the students for usefulness, 76.3% for quick
feedback and 81.8% for detailed checking. The utiliza-
tion of ALECSS increased during the second iteration.

Utilizing Software Engineering Education Support System ALECSS at an Actual Software Development Experiment: A Case Study

373

6.2 Utilization of ALECSS to Review
Other Project

52 students (91.2%) replied that they used ALECSS
to find issues in another project at the peer review
(week 10). Thus the percentage of the students is
increased compared to the result at week 9. The
reasons of not utilizing ALECSS at this week are as
follows.

 Still did not understand ALECSS messages.

 Did not need ALECSS since Checkstyle
reports possible coding style violations when
I use Eclipse.

 Already knew that the reviewing code does
not contain problems from the explanation
provided by the teacher.

At week 15 after the second iteration of the
experiment, 54 students (87%) replied that they used
ALECSS to find issues in another project at the peer
review.

They replied also if the system is useful in five
levels at week 10 and week 15. Figure 10 shows the
results.

Figure 10: Evaluation of ALECSS at week 10 and week 15.

For week 10, we have Positive answers (5 or 4)
are from 91% of the students and negative answers (2
or 1) from 9% of the students for usefulness of
ALECSS. Then for week 15, we have Positive
answers (5 or 4) are from 85% of the students and
negative answers (2 or 1) from 4% of the students for
usefulness of ALECSS.

We also collected the following comments about
ALECSS. Although we obtained some negative
comments, we are going to improve the system for
further utilization.

 Excellent checking system

 Very useful since ALECSS provides detailed
information about who did which task.

 Very useful since feedbacks are quickly
provided.

 Hard to understand how to use ALECSS.

 I found some unexpected behaviour of
ALECSS. Need to be fixed.

7 RELATED WORKS

Utilization of software tools for software engineering
education has a long history (Douce, 2005; Ihantola,
2010; Ala-Mutka, 2007; Caiza, 2013). At that time,
prevention of mindless resubmission of the student
project was an important issue. Furthermore only few
tools were available for free. On the other hand,
ALECSS utilizes various open source software tools
so that we are preparing to distribute ALECSS as
open-source software for free. The concept of
ALECSS is very similar to utilization of DevOps
tools presented in Eddy’s paper (Eddy 2017).
Teachers can easily check progress and update history
of the project by utilizing version management tool
Git and continuous integration tool Jenkins. There are
several education support systems for DevOps (Rong,
2017; Krusche, 2014). Unlike their work, we aim to
support more general and flexible software
engineering education using DevOps tools. ALECSS
is designed to integrate various checking tools for the
programming exercise so that we added original
checking functions as we explained in Sections 2.1,
2.4, 2.5, 2.7 and 2.8.

Pape proposed a software tool STAGE for
automatic grading of testing exercises (Pape, 2016).
The tool utilizes CodeCover to measure several code
coverage metrics in the context of white-box testing.
It utilizes Moodle as a frontend to the students.
However extension of the checking function is not
addressed.

Nandigam et al. reported that student’s
understanding of various software engineering
principles by utilizing various software tools
(Nandigam, 2008). They also proposed to utilize
software tools for iterative and incremental
development, documenting software requirements,
version control and source code management, coding
standards compliance, design visualization, software
testing, software metrics, etc. for undergraduate
software engineering courses (Nandigam, 2014).
Although the motivation of the research is similar to
ours, they did not develop a system for automatic
checking of the project code such as ALECSS.

Yu et al. also utilize free/open-source data and
tools for upper-level software engineering class for

CSEDU 2019 - 11th International Conference on Computer Supported Education

374

two semesters, where instructor’s experiences are
assembled and analysed (Yu, 2014). They also
reported that utilization of free/open-source data and
tools facilitate understanding of the students and that
their course can be kept up-to-date according to the
advancement of the tools and development methods
in industry. Along with the same experience as theirs,
we developed ALECSS which can be utilized at other
software engineering courses.

8 CONCLUDING REMARKS

Before developing ALECSS, the codes submitted by
the students have been manually checked by the
teachers. These checks are large burden for teachers
and take time to return feedback to students. We
often observe the similar situation at many exercise
for programming education. ALECCS can
automatically check the submitted codes so that
students (as individual or team member) can check
the results and correct their projects quickly. On the
other hand, the teachers can monitor students’
progress through Jenkins so that the burden of daily
checking can be significantly decreased. Then the
opportunity to guide students will be increased for the
teachers.

For the future work, we are planning to integrate
project management tool such as Redmine to
maintain master schedule and integrate to ALECSS.
Then the communication within each student team
can be improved and the time management of the
project will become easier. We also have a plan to
distribute ALECSS by utilizing incremental
deployment tool such as Chef or Docker. Then other
educational institution can utilize ALECSS for their
software engineering education.

ACKNOWLEDGEMENTS

This research is supported by JSPS Kakenhi Grant
No. 17K01036. We also appreciate the students
working on the development of ALECSS.

REFERENCES

Ala-Mutka, K. M., 2005. A survey of automated assessment
approaches for programming assignments, Computer
Science Education Journal, Vol. 15, Issue 2, pp. 83-102,
DOI: 10.1080/08993400500150747

Allspaw, J., Hammond, P., 2009. 10+ Deploys Per Day:
Dev and Ops Cooperation at Flickr.

Bass, L., Weber, I., Zhu, L., 2015. DevOps: A Software
Architect’s Perspective, SEI Series in Software
Engineering, Addison-Wesley.

Caiza, J. C., Del Alamo, J. M., 2013. Programming
assignments automatic grading: Review of tools and
implementations, In Proc. 7-th Technology, Education
and Development (INTEND 2013), pp. 5691-5700.

Douce, C., Livingstone, D., Orwell, J., 2005. Automatic
test-based assessment of programming: A review, In
ACM Journal of Educational Resources in Computing,
Vol. 5, No. 3, Article 4, 113 pages.

Eddy, B. P. et al., 2017. CDEP: Continuous Delivery
Educational Pipeline, In Proc. South East Conference,
pp. 55-62, ACM.

Ihantola, P. et al., 2010. Review of recent systems for
automatic assessment of programming assignments, In
Proc. 10-th Koli Calling International Conference on
Computing Education Research, pp. 86-93.

Koga, A., Feb. 2018. Test case checking functions for
software engineer education support system ALECSS,
As Graduation Thesis, Saga University. (in Japanese)

Krusche, S., Alperowitz, L., 2014. Introduction of
continuous delivery in multi-customer project courses,
Proc. ICSE2014, pp. 335-343, ACM.

Nandigam, J., Gudivada, V.N., Hamou-Lhadj, A., 2008.
Learning software engineering principles using open
source software, In Proc. Frontiers in Education
Conference, FIE 4720643, pp. S3H18-S3H23.

Nandigam, J., Gudivada, V.N., 2014. Learning software
industry practices with open source and free software
tools, In Open Source Technology: Concepts, Methodo-
logies, Tools, and Applications 2-4, pp. 997-1012.

Ohtsuki, M., Ohta, K., Kakeshita, T., 2016. Software
engineer education support system ALECSS utilizing
DevOps tools, In Proc. 18-th International Conference
on Information Integration and Web-based
Applications & Services (iiWAS2016), pp. 209-213.

Pape, S., Flake, J., Beckmann, A., Jürjens, J. 2016. STAGE:
A software tool for automatic grading of testing
exercises: Case study paper, In Proc. International
Conference on Software Engineering, pp. 491-500.

Rong, G. et al., 2017. DevOpsEnvy: An Education Support
System for DevOps, In Proc. CSEET2017, pp. 37-46,
IEEE.

Yu, L., Surma, D. R., Hakimzadeh, H., 2014. Incorporating
free/open-source data and tools in software engineering
education, In Overcoming Challenges in Software
Engineering Education: Delivering Non-Technical
Knowledge and Skills, pp. 431-441.

Utilizing Software Engineering Education Support System ALECSS at an Actual Software Development Experiment: A Case Study

375

